Suppr超能文献

Haloalkylamine-induced renal papillary necrosis: a histopathological study of structure-activity relationships.

作者信息

Powell C J, Grasso P, Ioannides C, Wilson J, Bridges J W

机构信息

Robens Institute, Guildford, Surrey, UK.

出版信息

Int J Exp Pathol. 1991 Dec;72(6):631-46.

Abstract

The haloalkylamine 2-bromoethanamine (BEA) causes necrosis of renal papillae of rats within 24 h of a single intraperitoneal dose greater than or equal to 100 mg/kg. Nine structural analogues of BEA, differing by halide substitution, alkyl chain elongation or amine substitution, were tested for their ability to induce renal papillary lesions in rats. Three compounds (2-chloroethanamine, 3-bromopropanamine and 2-chloro-N,N-dimethylethanamine) induced lesions which were morphologically indistinguishable from those of BEA. All the molecular structural variations investigated reduced papillotoxicity compared with BEA, the parent compound. A variety of non-renal lesions including hepatic, adrenal, testicular and lymphoid necroses were also encountered. The most toxic compound was 2-fluorethanamine, a 5 mg/kg dose of which was lethal and induced renal corticomedullary mineralization and centrilobular hepatic necrosis. One analogue, 3-bromo-2-hydroxypropanamine, caused rapid and extensive necrosis of the adrenal pars fasciculata and reticularis, simulating human Waterhouse Friderichsen syndrome. The three newly identified renal papillotoxins are all theoretically capable of generating direct-acting alkylating species in solution and their activity as direct-acting mutagens in the Ames bacterial mutagenicity test with TA100 (indicating base pair substitution) closely correlated with their potency as papillotoxins. We therefore hypothesize that non-enzymically formed direct-acting alkylating species mediate these papillary lesions, and that the target selectivity of haloalkylamine toxicity most probably results from the accumulation of these alkylating species in papillary tissue.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0cb/2002440/d5eff4c7024b/ijexpath00030-0024-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验