Suppr超能文献

啮齿动物的腰脊髓在行走过程中学会纠正由粘性力扰动引起的后肢协调错误。

The rodent lumbar spinal cord learns to correct errors in hindlimb coordination caused by viscous force perturbations during stepping.

作者信息

Heng Chad, de Leon Ray D

机构信息

Department of Biological Science, California State University, Los Angeles, California 90032, USA.

出版信息

J Neurosci. 2007 Aug 8;27(32):8558-62. doi: 10.1523/JNEUROSCI.1635-07.2007.

Abstract

The nervous system can adapt to external forces that perturb locomotion by correcting errors in limb movements. It is believed that supraspinal structures mediate these adaptations, whereas the spinal cord contributes only reflexive responses to perturbations. We examined whether the lumbar spinal cord in postnatal day 5 neonatal spinally transected (ST) rats corrected errors in hindlimb coordination through repetitive exposure to an external perturbation. A robotic device was used to deliver a viscous (velocity-dependent) force that opposed only the forward movement of the ankle in one hindlimb while the ST rats performed hindlimb stepping on a treadmill. We measured the interval between paw contact in the perturbed hindlimb and toe off in the unperturbed hindlimb. Before the force was activated, a normal pattern of coordination occurred: paw contact in the perturbed hindlimb occurred before toe off in the unperturbed hindlimb. This sequence was initially disrupted when the force was activated and the unperturbed hindlimb initiated swing during the swing phase of the perturbed hindlimb. Within five step cycles of exposure to the unilateral viscous force, however, the ST rats regained the preforce pattern of hindlimb coordination. These findings suggest that in the absence of supraspinal input, the lumbar spinal circuitry is capable of processing a complex ensemble of sensory information to maintain locomotor stability. Thus, the lumbar spinal circuitry may play a greater role in generating locomotor adaptations than previously thought.

摘要

神经系统能够通过纠正肢体运动中的错误来适应干扰运动的外力。人们认为,脊髓上结构介导这些适应性变化,而脊髓仅对干扰做出反射性反应。我们研究了出生后第5天脊髓横断(ST)新生大鼠的腰脊髓是否通过反复暴露于外部干扰来纠正后肢协调中的错误。在ST大鼠在跑步机上进行后肢踏步时,使用机器人装置施加一种粘性(与速度相关)力,该力仅阻碍一只后肢踝关节的向前运动。我们测量了受干扰后肢的爪接触与未受干扰后肢的趾离之间的间隔。在力被激活之前,出现了正常的协调模式:受干扰后肢的爪接触发生在未受干扰后肢的趾离之前。当力被激活且未受干扰的后肢在受干扰后肢的摆动阶段开始摆动时,这个顺序最初被打乱。然而,在暴露于单侧粘性力的五个步周期内,ST大鼠恢复了后肢协调的力前模式。这些发现表明,在没有脊髓上输入的情况下,腰脊髓回路能够处理复杂的感觉信息集合以维持运动稳定性。因此,腰脊髓回路在产生运动适应性方面可能比以前认为的发挥更大的作用。

相似文献

2
The rat lumbosacral spinal cord adapts to robotic loading applied during stance.
J Neurophysiol. 2002 Dec;88(6):3108-17. doi: 10.1152/jn.01050.2001.
3
Using robotics to teach the spinal cord to walk.
Brain Res Brain Res Rev. 2002 Oct;40(1-3):267-73. doi: 10.1016/s0165-0173(02)00209-6.
4
An in vitro spinal cord-hindlimb preparation for studying behaviorally relevant rat locomotor function.
J Neurophysiol. 2009 Feb;101(2):1114-22. doi: 10.1152/jn.90523.2008. Epub 2008 Dec 10.
5
Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat.
J Neurophysiol. 2019 Aug 1;122(2):585-600. doi: 10.1152/jn.00810.2018. Epub 2019 Apr 3.
8
Robotic loading during treadmill training enhances locomotor recovery in rats spinally transected as neonates.
J Neurophysiol. 2013 Aug;110(3):760-7. doi: 10.1152/jn.01099.2012. Epub 2013 May 15.
9
Use of robotics in assessing the adaptive capacity of the rat lumbar spinal cord.
Prog Brain Res. 2002;137:141-9. doi: 10.1016/s0079-6123(02)37013-4.
10
Retention of hindlimb stepping ability in adult spinal cats after the cessation of step training.
J Neurophysiol. 1999 Jan;81(1):85-94. doi: 10.1152/jn.1999.81.1.85.

引用本文的文献

1
The Specific Forces Applied During Robotic Training That Optimize Recovery of Locomotion in a Rat Model of Spinal Cord Injury.
Neurorehabil Neural Repair. 2025 Aug;39(8):602-611. doi: 10.1177/15459683251339809. Epub 2025 May 26.
2
Viscous field training induces after effects but hinders recovery of overground locomotion following spinal cord injury in rats.
Behav Brain Res. 2021 Aug 27;412:113415. doi: 10.1016/j.bbr.2021.113415. Epub 2021 Jun 18.
3
Maturation of the Locomotor Circuitry in Children With Cerebral Palsy.
Front Bioeng Biotechnol. 2020 Aug 18;8:998. doi: 10.3389/fbioe.2020.00998. eCollection 2020.
6
Lack of adaptation during prolonged split-belt locomotion in the intact and spinal cat.
J Physiol. 2017 Sep 1;595(17):5987-6006. doi: 10.1113/JP274518. Epub 2017 Jul 18.
7
Feed-Forwardness of Spinal Networks in Posture and Locomotion.
Neuroscientist. 2017 Oct;23(5):441-453. doi: 10.1177/1073858416683681. Epub 2016 Dec 30.
8
Uniqueness of Human Running Coordination: The Integration of Modern and Ancient Evolutionary Innovations.
Front Psychol. 2016 Apr 11;7:262. doi: 10.3389/fpsyg.2016.00262. eCollection 2016.
9
Gait Transitions in Human Infants: Coping with Extremes of Treadmill Speed.
PLoS One. 2016 Feb 1;11(2):e0148124. doi: 10.1371/journal.pone.0148124. eCollection 2016.
10
Plasticity and modular control of locomotor patterns in neurological disorders with motor deficits.
Front Comput Neurosci. 2013 Sep 10;7:123. doi: 10.3389/fncom.2013.00123.

本文引用的文献

2
Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking.
J Neurosci. 2006 Sep 6;26(36):9107-16. doi: 10.1523/JNEUROSCI.2622-06.2006.
3
Contribution of feedback and feedforward strategies to locomotor adaptations.
J Neurophysiol. 2006 Feb;95(2):766-73. doi: 10.1152/jn.00473.2005.
4
A role for hip position in initiating the swing-to-stance transition in walking cats.
J Neurophysiol. 2005 Nov;94(5):3497-508. doi: 10.1152/jn.00511.2005. Epub 2005 Aug 10.
5
Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification.
IEEE Trans Neural Syst Rehabil Eng. 2005 Mar;13(1):33-9. doi: 10.1109/TNSRE.2004.843173.
6
The rat lumbosacral spinal cord adapts to robotic loading applied during stance.
J Neurophysiol. 2002 Dec;88(6):3108-17. doi: 10.1152/jn.01050.2001.
7
Adaptive representation of dynamics during learning of a motor task.
J Neurosci. 1994 May;14(5 Pt 2):3208-24. doi: 10.1523/JNEUROSCI.14-05-03208.1994.
8
Can the mammalian lumbar spinal cord learn a motor task?
Med Sci Sports Exerc. 1994 Dec;26(12):1491-7.
9
Coordination of the legs of a slow-walking cat.
Exp Brain Res. 1992;89(1):147-56. doi: 10.1007/BF00229012.
10
Stumbling corrective reaction: a phase-dependent compensatory reaction during locomotion.
J Neurophysiol. 1979 Jul;42(4):936-53. doi: 10.1152/jn.1979.42.4.936.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验