Suppr超能文献

脊柱网络在姿势和运动中的前馈作用。

Feed-Forwardness of Spinal Networks in Posture and Locomotion.

机构信息

1 Department of Integrative Biology and Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

2 Pavlov Institute of Physiology, St. Petersburg, Russia.

出版信息

Neuroscientist. 2017 Oct;23(5):441-453. doi: 10.1177/1073858416683681. Epub 2016 Dec 30.

Abstract

We present a new perspective on the concept of feed-forward compared to feedback mechanisms for motor control. We propose that conceptually all sensory information in real time provided to the brain and spinal cord can be viewed as a feed-forward phenomenon. We also propose that the spinal cord continually adapts to a broad array of ongoing sensory information that is used to adjust the probability of making timely and predictable decisions of selected networks that will execute a given response. One interpretation of the term feedback historically entails responses with short delays. We propose that feed-forward mechanisms, however, range in timeframes of milliseconds to an evolutionary perspective, that is, "evolutionary learning." Continuously adapting events enable a high level of automaticity within the sensorimotor networks that mediate "planned" motor tasks. We emphasize that either a very small or a very large proportion of motor responses can be under some level of conscious vs automatic control. Furthermore, we make a case that a major component of automaticity of the neural control of movement in vertebrates is located within spinal cord networks. Even without brain input, the spinal cord routinely uses feed-forward processing of sensory information, particularly proprioceptive and cutaneous, to continuously make fundamental decisions that define motor responses. In effect, these spinal networks may be largely responsible for executing coordinated sensorimotor tasks, even those under normal "conscious" control.

摘要

我们提出了一种与反馈机制相比的新的前馈控制概念,用于运动控制。我们认为,从概念上讲,实时提供给大脑和脊髓的所有感觉信息都可以看作是前馈现象。我们还提出,脊髓不断适应广泛的持续感觉信息,用于调整及时做出可预测决策的概率,这些决策将执行给定的反应。术语“反馈”的一种解释涉及具有短延迟的反应。然而,我们提出,前馈机制在时间尺度上从毫秒到进化角度来看,即“进化学习”。不断适应的事件使介导“计划”运动任务的感觉运动网络具有高度的自动性。我们强调,非常小或非常大比例的运动反应可以在某种程度上受到意识与自动控制的影响。此外,我们提出一个观点,即脊椎动物运动神经控制的自动性的一个主要组成部分位于脊髓网络内。即使没有大脑输入,脊髓通常也会使用感觉信息的前馈处理,特别是本体感觉和皮肤感觉,来不断做出基本决策,从而定义运动反应。实际上,这些脊髓网络可能在很大程度上负责执行协调的感觉运动任务,即使是在正常的“意识”控制下。

相似文献

1
Feed-Forwardness of Spinal Networks in Posture and Locomotion.
Neuroscientist. 2017 Oct;23(5):441-453. doi: 10.1177/1073858416683681. Epub 2016 Dec 30.
2
Spinal circuits for motor learning.
Curr Opin Neurobiol. 2015 Aug;33:166-73. doi: 10.1016/j.conb.2015.04.007. Epub 2015 May 15.
3
Proprioception: Bottom-up directive for motor recovery after spinal cord injury.
Neurosci Res. 2020 May;154:1-8. doi: 10.1016/j.neures.2019.07.005. Epub 2019 Jul 20.
4
Spinal automaticity of movement control and its role in recovering function after spinal injury.
Expert Rev Neurother. 2022 Aug;22(8):655-667. doi: 10.1080/14737175.2022.2115359.
5
Sensory and descending motor circuitry during development and injury.
Curr Opin Neurobiol. 2018 Dec;53:156-161. doi: 10.1016/j.conb.2018.08.008. Epub 2018 Sep 8.
9
Human Spinal Motor Control.
Annu Rev Neurosci. 2016 Jul 8;39:81-101. doi: 10.1146/annurev-neuro-070815-013913. Epub 2016 Mar 25.
10
Decoding the organization of spinal circuits that control locomotion.
Nat Rev Neurosci. 2016 Apr;17(4):224-38. doi: 10.1038/nrn.2016.9. Epub 2016 Mar 3.

引用本文的文献

2
6
Cervical transcutaneous spinal stimulation for spinal motor mapping.
iScience. 2022 Aug 31;25(10):105037. doi: 10.1016/j.isci.2022.105037. eCollection 2022 Oct 21.
7
Characterization of interlimb interaction via transcutaneous spinal stimulation of cervical and lumbar spinal enlargements.
J Neurophysiol. 2022 Apr 1;127(4):1075-1085. doi: 10.1152/jn.00456.2021. Epub 2022 Mar 23.
9
Noninvasive spinal stimulation safely enables upright posture in children with spinal cord injury.
Nat Commun. 2021 Oct 6;12(1):5850. doi: 10.1038/s41467-021-26026-z.
10
Spinal Locomotion in Cats Following Spinal Cord Injury: A Prospective Study.
Animals (Basel). 2021 Jul 3;11(7):1994. doi: 10.3390/ani11071994.

本文引用的文献

1
Periodic modulation of repetitively elicited monosynaptic reflexes of the human lumbosacral spinal cord.
J Neurophysiol. 2015 Jul;114(1):400-10. doi: 10.1152/jn.00136.2015. Epub 2015 Apr 22.
2
Closed-loop neuroscience and neuroengineering.
Front Neural Circuits. 2014 Sep 23;8:115. doi: 10.3389/fncir.2014.00115. eCollection 2014.
3
Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans.
Brain. 2014 May;137(Pt 5):1394-409. doi: 10.1093/brain/awu038. Epub 2014 Apr 8.
4
Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
Front Neural Circuits. 2013 Feb 13;7:12. doi: 10.3389/fncir.2013.00012. eCollection 2013.
5
Variability in step training enhances locomotor recovery after a spinal cord injury.
Eur J Neurosci. 2012 Jul;36(1):2054-62. doi: 10.1111/j.1460-9568.2012.08106.x. Epub 2012 May 16.
6
Accommodation of the spinal cat to a tripping perturbation.
Front Physiol. 2012 May 1;3:112. doi: 10.3389/fphys.2012.00112. eCollection 2012.
7
Somatosensory control of balance during locomotion in decerebrated cat.
J Neurophysiol. 2012 Apr;107(8):2072-82. doi: 10.1152/jn.00730.2011. Epub 2012 Jan 11.
9
Why variability facilitates spinal learning.
J Neurosci. 2010 Aug 11;30(32):10720-6. doi: 10.1523/JNEUROSCI.1938-10.2010.
10
Feedback and feedforward locomotor adaptations to ankle-foot load in people with incomplete spinal cord injury.
J Neurophysiol. 2010 Sep;104(3):1325-38. doi: 10.1152/jn.00604.2009. Epub 2010 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验