Baldissera F, Roberts W J
Acta Physiol Scand. 1976 Feb;96(2):217-32. doi: 10.1111/j.1748-1716.1976.tb10191.x.
Convergence of vestibulospinal and segmental effects onto spinal interneurones which project to the ventral spino-cerebellar tract (VSCT) neurones has been studied by intracellular recording in VSCT cells. The disynaptic Ia IPSPs evoked in a group of VSCT neurones from the quadriceps nerve are monosynaptically facilitated by the vestibulospinal tract while there was no facilitation of Ia IPSP evoked from a flexor nerve. These results support the view that Ia inhibition to VSCT cells and motoneurones is mediated by common interneurones. The disynaptic inhibition evoked in other VSCT cells from the vestibulospinal tract is facilitated by volleys in the contralateral flexor reflex afferents (FRA) or bilaterally from the FRA. It is postulated that these actions are mediated by collaterals of the interneurones responsible for the analogous effects in motoneurones. Findings are reported suggesting that the monosynaptic vestibulospinal EPSP in VSCT cells in most cases is collateral to the excitatory input to the last order interneurones of reflex pathways from the FRA to motoneurones and only exceptionally to the corresponding input to Ia inhibitory interneurones. In many VSCT cells the vestibulospinal tract evoked disynaptic EPSPs which are facilitated from the FRA; the functional significance of this action is uncertain. The results are consistent with the hypothesis that VSCT neurones signal information on interneuronal transmission to motoneurones.
通过对脊髓小脑前束(VSCT)细胞进行细胞内记录,研究了前庭脊髓束和节段性效应在投射至VSCT神经元的脊髓中间神经元上的汇聚情况。在一组由股四头肌神经诱发的VSCT神经元中,双突触Ia抑制性突触后电位(IPSP)在前庭脊髓束的作用下单突触易化,而由屈肌神经诱发的Ia IPSP则无易化现象。这些结果支持了这样一种观点,即对VSCT细胞和运动神经元的Ia抑制是由共同的中间神经元介导的。在前庭脊髓束诱发的其他VSCT细胞中的双突触抑制,在对侧屈肌反射传入纤维(FRA)的冲动作用下或双侧FRA的冲动作用下易化。据推测,这些作用是由对运动神经元产生类似效应的中间神经元的侧支介导的。有研究结果表明,在大多数情况下,VSCT细胞中的单突触前庭脊髓兴奋性突触后电位(EPSP)是FRA至运动神经元反射通路中最后一级中间神经元兴奋性输入的侧支,仅在极少数情况下是Ia抑制性中间神经元相应输入的侧支。在许多VSCT细胞中,前庭脊髓束诱发双突触EPSP,该电位在FRA的作用下易化;这种作用的功能意义尚不确定。这些结果与VSCT神经元传递中间神经元至运动神经元的信息这一假说一致。