Suppr超能文献

使用三维圆柱强度模型对人体血管进行分割和量化。

Segmentation and quantification of human vessels using a 3-D cylindrical intensity model.

作者信息

Wörz Stefan, Rohr Karl

机构信息

Department of Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, BIOQUANT, and IPMB, University of Heidelberg, D-69120 Heidelberg, Germany.

出版信息

IEEE Trans Image Process. 2007 Aug;16(8):1994-2004. doi: 10.1109/tip.2007.901204.

Abstract

We introduce a new approach for 3-D segmentation and quantification of vessels. The approach is based on a 3-D cylindrical parametric intensity model, which is directly fitted to the image intensities through an incremental process based on a Kalman filter. Segmentation results are the vessel centerline and shape, i.e., we estimate the local vessel radius, the 3-D position and 3-D orientation, the contrast, as well as the fitting error. We carried out an extensive validation using 3-D synthetic images and also compared the new approach with an approach based on a Gaussian model. In addition, the new model has been successfully applied to segment vessels from 3-D MRA and computed tomography angiography image data. In particular, we compared our approach with an approach based on the randomized Hough transform. Moreover, a validation of the segmentation results based on ground truth provided by a radiologist confirms the accuracy of the new approach. Our experiments show that the new model yields superior results in estimating the vessel radius compared to previous approaches based on a Gaussian model as well as the Hough transform.

摘要

我们介绍了一种用于血管三维分割和量化的新方法。该方法基于三维圆柱参数强度模型,通过基于卡尔曼滤波器的增量过程直接拟合图像强度。分割结果是血管中心线和形状,即我们估计局部血管半径、三维位置和三维方向、对比度以及拟合误差。我们使用三维合成图像进行了广泛的验证,并将新方法与基于高斯模型的方法进行了比较。此外,新模型已成功应用于从三维磁共振血管造影(MRA)和计算机断层血管造影图像数据中分割血管。特别是,我们将我们的方法与基于随机霍夫变换的方法进行了比较。此外,基于放射科医生提供的地面真值对分割结果进行的验证证实了新方法的准确性。我们的实验表明,与基于高斯模型以及霍夫变换的先前方法相比,新模型在估计血管半径方面产生了更优的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验