Chung Albert C S, Noble J Alison, Summers Paul
Department of Computer Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
IEEE Trans Med Imaging. 2004 Dec;23(12):1490-507. doi: 10.1109/TMI.2004.836877.
In this paper, we present an approach to segmenting the brain vasculature in phase contrast magnetic resonance angiography (PC-MRA). According to our prior work, we can describe the overall probability density function of a PC-MRA speed image as either a Maxwell-uniform (MU) or Maxwell-Gaussian-uniform (MGU) mixture model. An automatic mechanism based on Kullback-Leibler divergence is proposed for selecting between the MGU and MU models given a speed image volume. A coherence measure, namely local phase coherence (LPC), which incorporates information about the spatial relationships between neighboring flow vectors, is defined and shown to be more robust to noise than previously described coherence measures. A statistical measure from the speed images and the LPC measure from the phase images are combined in a probabilistic framework, based on the maximum a posteriori method and Markov random fields, to estimate the posterior probabilities of vessel and background for classification. It is shown that segmentation based on both measures gives a more accurate segmentation than using either speed or flow coherence information alone. The proposed method is tested on synthetic, flow phantom and clinical datasets. The results show that the method can segment normal vessels and vascular regions with relatively low flow rate and low signal-to-noise ratio, e.g., aneurysms and veins.
在本文中,我们提出了一种在相位对比磁共振血管造影(PC-MRA)中分割脑脉管系统的方法。根据我们之前的工作,我们可以将PC-MRA速度图像的整体概率密度函数描述为麦克斯韦-均匀(MU)或麦克斯韦-高斯-均匀(MGU)混合模型。针对给定的速度图像体,提出了一种基于库尔贝克-莱布勒散度的自动机制,用于在MGU和MU模型之间进行选择。定义了一种相干性度量,即局部相位相干(LPC),它结合了相邻流向量之间空间关系的信息,并且被证明比先前描述的相干性度量对噪声更具鲁棒性。基于最大后验方法和马尔可夫随机场,在概率框架中将速度图像的统计度量和相位图像的LPC度量相结合,以估计血管和背景的后验概率用于分类。结果表明,基于这两种度量的分割比单独使用速度或流相干信息能给出更准确的分割。所提出的方法在合成数据、流动模型和临床数据集上进行了测试。结果表明,该方法能够分割正常血管以及流速相对较低和信噪比低的血管区域,例如动脉瘤和静脉。