Suppr超能文献

基于多项式的快速模板匹配

Fast template matching with polynomials.

作者信息

Omachi Shinichiro, Omachi Masako

机构信息

Graduate School of Engineering, Tohoku University, Sendai-shi 980-8579, Japan.

出版信息

IEEE Trans Image Process. 2007 Aug;16(8):2139-49. doi: 10.1109/tip.2007.901243.

Abstract

Template matching is widely used for many applications in image and signal processing. This paper proposes a novel template matching algorithm, called algebraic template matching. Given a template and an input image, algebraic template matching efficiently calculates similarities between the template and the partial images of the input image, for various widths and heights. The partial image most similar to the template image is detected from the input image for any location, width, and height. In the proposed algorithm, a polynomial that approximates the template image is used to match the input image instead of the template image. The proposed algorithm is effective especially when the width and height of the template image differ from the partial image to be matched. An algorithm using the Legendre polynomial is proposed for efficient approximation of the template image. This algorithm not only reduces computational costs, but also improves the quality of the approximated image. It is shown theoretically and experimentally that the computational cost of the proposed algorithm is much smaller than the existing methods.

摘要

模板匹配在图像和信号处理的许多应用中被广泛使用。本文提出了一种新颖的模板匹配算法,称为代数模板匹配。给定一个模板和一幅输入图像,代数模板匹配能针对各种宽度和高度有效地计算模板与输入图像的部分图像之间的相似度。从输入图像中针对任何位置、宽度和高度检测出与模板图像最相似的部分图像。在所提出的算法中,使用一个近似模板图像的多项式来匹配输入图像,而不是使用模板图像本身。所提出的算法在模板图像的宽度和高度与要匹配的部分图像不同时尤其有效。提出了一种使用勒让德多项式的算法来对模板图像进行高效近似。该算法不仅降低了计算成本,还提高了近似图像的质量。从理论和实验上表明,所提出算法的计算成本比现有方法小得多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验