Suppr超能文献

用于图像恢复和图像融合的新型协同神经融合算法。

Novel cooperative neural fusion algorithms for image restoration and image fusion.

作者信息

Xia Youshen, Kamel Mohamed S

机构信息

Department of Electrical and Computer Engineering, University of Waterloo, ON N2L 3G1, Canada.

出版信息

IEEE Trans Image Process. 2007 Feb;16(2):367-81. doi: 10.1109/tip.2006.888340.

Abstract

To deal with the problem of restoring degraded images with non-Gaussian noise, this paper proposes a novel cooperative neural fusion regularization (CNFR) algorithm for image restoration. Compared with conventional regularization algorithms for image restoration, the proposed CNFR algorithm can relax need of the optimal regularization parameter to be estimated. Furthermore, to enhance the quality of restored images, this paper presents a cooperative neural fusion (CNF) algorithm for image fusion. Compared with existing signal-level image fusion algorithms, the proposed CNF algorithm can greatly reduce the loss of contrast information under blind Gaussian noise environments. The performance analysis shows that the proposed two neural fusion algorithms can converge globally to the robust and optimal image estimate. Simulation results confirm that in different noise environments, the proposed two neural fusion algorithms can obtain a better image estimate than several well known image restoration and image fusion methods.

摘要

为解决具有非高斯噪声的退化图像恢复问题,本文提出了一种用于图像恢复的新型协作神经融合正则化(CNFR)算法。与传统的图像恢复正则化算法相比,所提出的CNFR算法可以放宽对需估计的最优正则化参数的要求。此外,为提高恢复图像的质量,本文提出了一种用于图像融合的协作神经融合(CNF)算法。与现有的信号级图像融合算法相比,所提出的CNF算法在盲高斯噪声环境下可以大大减少对比度信息的损失。性能分析表明,所提出的两种神经融合算法能够全局收敛到稳健且最优的图像估计值。仿真结果证实,在不同噪声环境下,所提出的两种神经融合算法比几种知名的图像恢复和图像融合方法能够获得更好的图像估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验