Suppr超能文献

多路偏最小二乘法与残差三线性化相结合:一种用于研究三阶数据的真正多维工具。马血清中普鲁卡因及其代谢物对氨基苯甲酸的同时分析。

Multiway partial least-squares coupled to residual trilinearization: a genuine multidimensional tool for the study of third-order data. Simultaneous analysis of procaine and its metabolite p-aminobenzoic acid in equine serum.

作者信息

Damiani Patricia C, Durán-Merás Isabel, García-Reiriz Alejandro, Jiménez-Girón Ana, de la Peña Arsenio Muñoz, Olivieri Alejandro C

机构信息

Departamento de Química Analítica, Facultad de Ciencias, Universidad de Extremadura (06071) Badajoz, Spain.

出版信息

Anal Chem. 2007 Sep 15;79(18):6949-58. doi: 10.1021/ac070596+. Epub 2007 Aug 10.

Abstract

A new third-order multivariate calibration approach, based on the combination of multiway-partial least-squares with a separate procedure called residual trilinearization (N-PLS/RTL), is presented and applied to multicomponent analysis using third-order data. The proposed chemometric algorithm is able to predict analyte concentrations in the presence of unexpected sample components, which require strict adherence to the second-order advantage. Results for the determination of procaine and its metabolite p-aminobenzoic acid in equine serum are discussed, based on kinetic fluorescence excitation-emission four-way measurements and application of the newly developed multiway methodology. Since the analytes are also the reagent and product of the hydrolysis reaction followed by fast-scanning fluorescence spectroscopy, the classical approach based on parallel factor analysis is challenged by strong linear dependencies and multilinearity losses. In comparison, N-PLS/RTL appears an appealing genuine multiway alternative that avoids the latter complications, yielding analytical results that are statistically comparable to those rendered by related unfolded algorithms, which are also able to process four-way data. Prediction was made on validation samples with a qualitative composition similar to the calibration set and also on test samples containing unexpected equine serum components.

摘要

提出了一种基于多元偏最小二乘法与称为残差三线性化(N-PLS/RTL)的单独程序相结合的新型三阶多元校准方法,并将其应用于使用三阶数据的多组分分析。所提出的化学计量学算法能够在存在意外样品成分的情况下预测分析物浓度,这需要严格遵循二阶优势。基于动力学荧光激发-发射四维测量以及新开发的多元方法的应用,讨论了马血清中普鲁卡因及其代谢物对氨基苯甲酸的测定结果。由于分析物也是水解反应的试剂和产物,随后进行快速扫描荧光光谱分析,基于平行因子分析的经典方法受到强线性相关性和多重线性损失的挑战。相比之下,N-PLS/RTL似乎是一种有吸引力的真正多元替代方法,可避免后一种复杂性,产生的分析结果在统计学上与相关展开算法得出的结果相当,相关展开算法也能够处理四维数据。对具有与校准集相似定性组成的验证样品以及含有意外马血清成分的测试样品进行了预测。

相似文献

7
New robust bilinear least squares method for the analysis of spectral-pH matrix data.
Appl Spectrosc. 2005 Jul;59(7):926-33. doi: 10.1366/0003702054411643.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验