Lozano Valeria A, Ibañez Gabriela A, Olivieri Alejandro C
Departamento de Química Analítica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Instituto de Química Rosario (IQUIR-CONICET), Suipacha 531, Rosario S2002LRK, Argentina.
Anal Chim Acta. 2009 Oct 5;651(2):165-72. doi: 10.1016/j.aca.2009.08.027. Epub 2009 Aug 26.
In the presence of analyte-background interactions and a significant background signal, both second-order multivariate calibration and standard addition are required for successful analyte quantitation achieving the second-order advantage. This report discusses a modified second-order standard addition method, in which the test data matrix is subtracted from the standard addition matrices, and quantitation proceeds via the classical external calibration procedure. It is shown that this novel data processing method allows one to apply not only parallel factor analysis (PARAFAC) and multivariate curve resolution-alternating least-squares (MCR-ALS), but also the recently introduced and more flexible partial least-squares (PLS) models coupled to residual bilinearization (RBL). In particular, the multidimensional variant N-PLS/RBL is shown to produce the best analytical results. The comparison is carried out with the aid of a set of simulated data, as well as two experimental data sets: one aimed at the determination of salicylate in human serum in the presence of naproxen as an additional interferent, and the second one devoted to the analysis of danofloxacin in human serum in the presence of salicylate.
在存在分析物-背景相互作用和显著背景信号的情况下,为了成功实现具有二阶优势的分析物定量,二阶多元校准和标准加入法都是必需的。本报告讨论了一种改进的二阶标准加入法,其中从标准加入矩阵中减去测试数据矩阵,并通过经典的外部校准程序进行定量。结果表明,这种新颖的数据处理方法不仅允许应用平行因子分析(PARAFAC)和多元曲线分辨交替最小二乘法(MCR-ALS),还允许应用最近引入的、更灵活的与残差双线性化(RBL)相结合的偏最小二乘法(PLS)模型。特别是,多维变体N-PLS/RBL显示出能产生最佳的分析结果。借助一组模拟数据以及两个实验数据集进行了比较:一个旨在测定存在萘普生作为额外干扰物时人血清中的水杨酸盐,另一个致力于分析存在水杨酸盐时人血清中的达氟沙星。