Suppr超能文献

鱼类生物机器人技术:自主推进的运动学与流体动力学

Fish biorobotics: kinematics and hydrodynamics of self-propulsion.

作者信息

Lauder George V, Anderson Erik J, Tangorra James, Madden Peter G A

机构信息

Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

出版信息

J Exp Biol. 2007 Aug;210(Pt 16):2767-80. doi: 10.1242/jeb.000265.

Abstract

As a result of years of research on the comparative biomechanics and physiology of moving through water, biologists and engineers have made considerable progress in understanding how animals moving underwater use their muscles to power movement, in describing body and appendage motion during propulsion, and in conducting experimental and computational analyses of fluid movement and attendant forces. But it is clear that substantial future progress in understanding aquatic propulsion will require new lines of attack. Recent years have seen the advent of one such new avenue that promises to greatly broaden the scope of intellectual opportunity available to researchers: the use of biorobotic models. In this paper we discuss, using aquatic propulsion in fishes as our focal example, how using robotic models can lead to new insights in the study of aquatic propulsion. We use two examples: (1) pectoral fin function, and (2) hydrodynamic interactions between dorsal and caudal fins. Pectoral fin function is characterized by considerable deformation of individual fin rays, as well as spanwise (along the length) and chordwise (across the fin) deformation and area change. The pectoral fin can generate thrust on both the outstroke and instroke. A robotic model of the pectoral fin replicates this result, and demonstrates the effect of altering stroke kinematics on the pattern of force production. The soft dorsal fin of fishes sheds a distinct vortex wake that dramatically alters incoming flow to the tail: the dorsal fin and caudal fin act as dual flapping foils in series. This design can be replicated with a dual-foil flapping robotic device that demonstrates this phenomenon and allows examination of regions of the flapping performance space not available to fishes. We show how the robotic flapping foil device can also be used to better understand the significance of flexible propulsive surfaces for locomotor performance. Finally we emphasize the utility of self-propelled robotic devices as a means of understanding how locomotor forces are generated, and review different conceptual designs for robotic models of aquatic propulsion.

摘要

经过多年对水中移动的比较生物力学和生理学研究,生物学家和工程师在理解水下移动的动物如何利用肌肉产生动力、描述推进过程中身体和附肢的运动,以及进行流体运动和伴随力的实验与计算分析方面取得了显著进展。但显然,未来要在理解水生推进方面取得实质性进展需要新的研究方法。近年来出现了一种新途径,有望极大地拓宽研究人员的知识视野:使用生物机器人模型。在本文中,我们以鱼类的水生推进为例,讨论使用机器人模型如何能在水生推进研究中带来新的见解。我们使用两个例子:(1)胸鳍功能,以及(2)背鳍和尾鳍之间的流体动力相互作用。胸鳍功能的特点是单个鳍条有相当大的变形,以及展向(沿长度方向)和弦向(横跨鳍)的变形及面积变化。胸鳍在向外划水和向内划水时都能产生推力。胸鳍的机器人模型再现了这一结果,并展示了改变划水运动学对力产生模式的影响。鱼类柔软的背鳍会产生独特的涡旋尾迹,极大地改变流向尾部的入水水流:背鳍和尾鳍串联起作用,如同双拍动翼片。这种设计可以用双翼片拍动的机器人装置来复制,该装置展示了这种现象,并允许研究鱼类无法触及的拍动性能空间区域。我们展示了机器人拍动翼片装置还可用于更好地理解柔性推进表面对运动性能的重要性。最后,我们强调自推进机器人装置作为理解运动力如何产生的一种手段的实用性,并回顾了水生推进机器人模型的不同概念设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验