Suppr超能文献

异时摆尾在雷诺数四个数量级的变化范围内都能提供强大的推进性能。

Metachronal rowing provides robust propulsive performance across four orders of magnitude variation in Reynolds number.

作者信息

Ford Mitchell P, Santhanakrishnan Arvind

机构信息

School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, USA.

出版信息

J R Soc Interface. 2025 Jun;22(227):20240822. doi: 10.1098/rsif.2024.0822. Epub 2025 Jun 4.

Abstract

Metachronal rowing of multiple appendages is a swimming strategy used by numerous organisms across various taxa, with body sizes ranging of the orders of [Formula: see text] to [Formula: see text] m. This corresponds to a huge variation in fluid flow regimes, characterized by paddle-scale Reynolds numbers ([Formula: see text]) ranging from the orders of [Formula: see text] (viscosity dominated) to [Formula: see text] (inertially dominated). Though the rhythmic stroking of the paddles is conserved across species and developmental stages, the hydrodynamic scalability of metachronal rowing has not been examined across this broad [Formula: see text] range. Using a self-propelled metachronal paddling robot, we examine swimming performance changes across four orders of magnitude variation in [Formula: see text] most relevant to crustaceans ([Formula: see text] to [Formula: see text]). We found that wake Strouhal number ([Formula: see text]), which characterizes momentum transfer from paddles to the wake, was unchanged for [Formula: see text] ([Formula: see text]). This is within the reported range of Strouhal numbers of various flying and swimming animals. Peak dimensionless circulation of paddle tip vortices increased linearly with stroke kinematics but was mostly unaffected by fluid viscosity. These findings show that the swimming performance of metachronal rowing is conserved across widely varying flow regimes, with dimensionless swimming speed scaling linearly with [Formula: see text] across the entire tested range.

摘要

多个附肢的顺序摆动是多种生物类群中众多生物体所采用的一种游泳策略,其体型大小从[公式:见正文]到[公式:见正文]米不等。这对应着流体流动状态的巨大差异,其特征是桨叶尺度的雷诺数([公式:见正文])范围从[公式:见正文](粘性主导)到[公式:见正文](惯性主导)。尽管桨叶的有节奏划动在不同物种和发育阶段都是保守的,但顺序摆动的流体动力学可扩展性尚未在如此广泛的[公式:见正文]范围内进行研究。我们使用一个自行推进的顺序划桨机器人,研究了与甲壳类动物最相关的[公式:见正文]四个数量级变化范围内的游泳性能变化([公式:见正文]到[公式:见正文])。我们发现,表征从桨叶到尾流的动量传递的尾流斯特劳哈尔数([公式:见正文])在[公式:见正文]([公式:见正文])范围内保持不变。这在各种飞行和游泳动物所报道的斯特劳哈尔数范围内。桨叶尖端涡旋的峰值无量纲环流随划水运动学线性增加,但大多不受流体粘度影响。这些发现表明,顺序摆动的游泳性能在广泛不同的流动状态下是保守的,在整个测试范围内,无量纲游泳速度与[公式:见正文]呈线性比例关系。

相似文献

1
Metachronal rowing provides robust propulsive performance across four orders of magnitude variation in Reynolds number.
J R Soc Interface. 2025 Jun;22(227):20240822. doi: 10.1098/rsif.2024.0822. Epub 2025 Jun 4.
2
Going around the bend to understand the role of leg coalescence in metachronal swimming.
J Exp Biol. 2025 Jun 15;228(12). doi: 10.1242/jeb.249330. Epub 2025 Jun 20.
4
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
5
Closer Appendage Spacing Augments Metachronal Swimming Speed by Promoting Tip Vortex Interactions.
Integr Comp Biol. 2021 Nov 17;61(5):1608-1618. doi: 10.1093/icb/icab112.
7
Fluid Dynamics of Multiple Fast-Firing Extrusomes : Fast extrusomes.
Bull Math Biol. 2025 Jun 23;87(7):100. doi: 10.1007/s11538-025-01474-6.
8
Anisotropic chemical bonding of lanthanide-OH molecules.
Sci Rep. 2025 Jul 1;15(1):21480. doi: 10.1038/s41598-025-06281-6.
9
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.
10
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.

引用本文的文献

1
Going around the bend to understand the role of leg coalescence in metachronal swimming.
J Exp Biol. 2025 Jun 15;228(12). doi: 10.1242/jeb.249330. Epub 2025 Jun 20.

本文引用的文献

1
Going around the bend to understand the role of leg coalescence in metachronal swimming.
J Exp Biol. 2025 Jun 15;228(12). doi: 10.1242/jeb.249330. Epub 2025 Jun 20.
2
Mantis Shrimp Locomotion: Coordination and Variation of Hybrid Metachronal Swimming.
Integr Org Biol. 2023 Jun 27;5(1):obad019. doi: 10.1093/iob/obad019. eCollection 2023.
3
Pleobot: a modular robotic solution for metachronal swimming.
Sci Rep. 2023 Jun 13;13(1):9574. doi: 10.1038/s41598-023-36185-2.
4
Fishes regulate tail-beat kinematics to minimize speed-specific cost of transport.
Proc Biol Sci. 2021 Dec 8;288(1964):20211601. doi: 10.1098/rspb.2021.1601. Epub 2021 Dec 1.
5
Spatiotemporal Asymmetry in Metachronal Rowing at Intermediate Reynolds Numbers.
Integr Comp Biol. 2021 Nov 17;61(5):1579-1593. doi: 10.1093/icb/icab179.
6
Hybrid Metachronal Rowing Augments Swimming Speed and Acceleration via Increased Stroke Amplitude.
Integr Comp Biol. 2021 Nov 17;61(5):1619-1630. doi: 10.1093/icb/icab141.
7
Dual Phase-Shifted Ipsilateral Metachrony in Americamysis bahia.
Integr Comp Biol. 2021 Nov 17;61(5):1644-1657. doi: 10.1093/icb/icab119.
8
Closer Appendage Spacing Augments Metachronal Swimming Speed by Promoting Tip Vortex Interactions.
Integr Comp Biol. 2021 Nov 17;61(5):1608-1618. doi: 10.1093/icb/icab112.
9
Metachronal Swimming of Mantis Shrimp: Kinematics and Interpleopod Vortex Interactions.
Integr Comp Biol. 2021 Nov 17;61(5):1631-1643. doi: 10.1093/icb/icab052.
10
Metachronal Swimming with Flexible Legs: A Kinematics Analysis of the Midwater Polychaete Tomopteris.
Integr Comp Biol. 2021 Nov 17;61(5):1658-1673. doi: 10.1093/icb/icab059.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验