Fisz Jacek J
Institute of Physics, Nicolaus Copernicus University, ul. Grudzidzka 5/7, PL 87-100 Toruń, Poland.
J Phys Chem A. 2007 Sep 6;111(35):8606-21. doi: 10.1021/jp072113b. Epub 2007 Aug 10.
A problem of the one-photon-excitation fluorescence polarization spectroscopy of macroscopically isotropic media, in the case of combined high-aperture excitation and detection, is considered and described in a spherical representation. The case of inhomogeneous intensity distribution in the cross-section of the parallel beam of exciting light, which is converted by an objective lens into inhomogeneous radial distribution of the intensity of the focused exciting light, is also taken into account. The obtained formalism is adapted to the description of confocal fluorescence polarization microscopy. It is shown that the total and magic-angle-detected fluorescence decays do not solely represent the kinetic evolution of the excited-state because of the contribution of the dynamic evolution of photoselected fluorophores. The time-evolution of emission anisotropy is nonexponential. The outlined theory predicts that the total and magic-angle-detected fluorescence decays solely represent the kinetic fluorescence decay, and thereby, the emission anisotropy becomes an (multi)exponential function of time for the excitation-detection cone half-angles not higher than about 15-20 degrees. The initial values of the emission anisotropy are not modified by the application of the excitation-detection apertures if the cone half-angles do not exceed 10-15 degrees. The histograms of unpolarized fluorescence, calculated from the parallel and the perpendicular components of polarized fluorescence, detected at the excitation-detection cones wider than about 65 degrees solely represent the kinetic fluorescence decay. At such conditions, the microscope objective operates like an "integrating sphere". The calibration method, which is based on a general (symmetry adapted) formula describing fluorescence polarization experiments on macroscopically isotropic samples, is discussed. This method enables the analysis of all fluorescence polarization experiments without the necessity of considering the expressions for polarized fluorescence decays relating to a particular experimental case of interest. With this method, any commercially available microscope objective can be calibrated, and its optical properties can be precisely verified. The application of the outlined theory to different fluorescence spectroscopy techniques is indicated. The expressions derived for confocal fluorescence polarization microscopy can be employed in the numerical analysis of the data recovered from the photochemical bioimaging.
考虑并以球面表示法描述了宏观各向同性介质的单光子激发荧光偏振光谱在高孔径激发和检测相结合情况下的一个问题。还考虑了激发光平行光束横截面中强度分布不均匀的情况,该强度分布经物镜转换为聚焦激发光强度的不均匀径向分布。所得到的形式体系适用于共聚焦荧光偏振显微镜的描述。结果表明,由于光选荧光团的动态演化的贡献,总荧光衰减和魔角检测荧光衰减并不完全代表激发态的动力学演化。发射各向异性的时间演化是非指数型的。所概述的理论预测,对于激发 - 检测锥半角不高于约15 - 20度的情况,总荧光衰减和魔角检测荧光衰减仅代表动力学荧光衰减,因此发射各向异性成为时间的(多)指数函数。如果锥半角不超过10 - 15度,发射各向异性的初始值不会因应用激发 - 检测孔径而改变。在激发 - 检测锥宽于约65度时检测到的、由偏振荧光的平行和垂直分量计算得到的非偏振荧光直方图仅代表动力学荧光衰减。在这种条件下,显微镜物镜的作用类似于一个“积分球”。讨论了基于描述宏观各向同性样品上荧光偏振实验的通用(对称适配)公式的校准方法。这种方法能够分析所有荧光偏振实验,而无需考虑与特定感兴趣实验情况相关的偏振荧光衰减表达式。利用这种方法,可以对任何市售显微镜物镜进行校准,并精确验证其光学性质。指出了所概述理论在不同荧光光谱技术中的应用。从共聚焦荧光偏振显微镜推导得到的表达式可用于从光化学生物成像中恢复的数据的数值分析。