Suppr超能文献

CAESAR:一种基于递归构建和局部旋转对称性考虑的新构象生成算法。

CAESAR: a new conformer generation algorithm based on recursive buildup and local rotational symmetry consideration.

作者信息

Li Jiabo, Ehlers Tedman, Sutter Jon, Varma-O'brien Shikha, Kirchmair Johannes

机构信息

Accelrys Inc., 10188 Telesis Court, San Diego, California 92121, USA.

出版信息

J Chem Inf Model. 2007 Sep-Oct;47(5):1923-32. doi: 10.1021/ci700136x. Epub 2007 Aug 11.

Abstract

A highly efficient conformer search algorithm based on a divide-and-conquer and recursive conformer build-up approach is presented in this paper. This approach is combined with consideration of local rotational symmetry so that conformer duplicates due to topological symmetry in the systematic search can be efficiently eliminated. This new algorithm, termed CAESAR (Conformer Algorithm based on Energy Screening and Recursive Buildup), has been implemented in Discovery Studio 1.7 as part of the Catalyst Component Collection. CAESAR has been validated by comparing the conformer models generated by the new method and Catalyst/FAST. CAESAR is consistently 5-20 times faster than Catalyst/FAST for all data sets investigated. The speedup is even more dramatic for molecules with high topological symmetry or for molecules that require a large number of conformers to be sampled. The quality of the conformer models generated by CAESAR has been validated by assessing the ability to reproduce the receptor-bound X-ray conformation of ligands extracted for the Protein Data Bank (PDB) and assessing the ability to adequately cover the pharmacophore space. It is shown that CAESAR is able to reproduce the receptor-bound conformation slightly better than the Catalyst/FAST method for a data set of 918 ligands retrieved from the PDB. In addition, it is shown that CEASAR covers the pharmacophore space as well or better than Catalyst/FAST.

摘要

本文提出了一种基于分治法和递归构象体构建方法的高效构象体搜索算法。该方法结合了局部旋转对称性的考虑,以便在系统搜索中能够有效消除由于拓扑对称性导致的构象体重复。这种新算法称为CAESAR(基于能量筛选和递归构建的构象体算法),已作为Catalyst组件集的一部分在Discovery Studio 1.7中实现。通过比较新方法和Catalyst/FAST生成的构象体模型,对CAESAR进行了验证。对于所有研究的数据集,CAESAR始终比Catalyst/FAST快5到20倍。对于具有高拓扑对称性的分子或需要采样大量构象体的分子,加速效果更为显著。通过评估重现从蛋白质数据库(PDB)中提取的配体与受体结合的X射线构象的能力以及评估充分覆盖药效团空间的能力,对CAESAR生成的构象体模型的质量进行了验证。结果表明,对于从PDB中检索的918个配体的数据集,CAESAR能够比Catalyst/FAST方法更好地重现与受体结合的构象。此外,结果表明CEASAR覆盖药效团空间的情况与Catalyst/FAST相当或更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验