Suppr超能文献

LSA:一种用于药物虚拟筛选的局部加权结构比对工具。

LSA: a local-weighted structural alignment tool for pharmaceutical virtual screening.

作者信息

Li Xiuming, Yan Xin, Yang Yuedong, Gu Qiong, Zhou Huihao, Du Yunfei, Lu Yutong, Liao Jielou, Xu Jun

机构信息

Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University 132 East Circle at University City Guangzhou 510006 China

National Supercomputer Center in Guangzhou, School of Data and Computer Science, Sun Yat-Sen University 132 East Circle at University City Guangzhou 510006 China.

出版信息

RSC Adv. 2019 Jan 29;9(7):3912-3917. doi: 10.1039/c8ra08915a. eCollection 2019 Jan 25.

Abstract

Similar structures having similar activities is a dogma for identifying new functional molecules. However, it is not rare that a minor structural change can cause a significant activity change. Methods to measure the molecular similarity can be classified into two categories of overall three-dimensional shape based methods and local substructure based methods. The former states the relation between overall similarity and activity, and is represented by conventional similarity algorithms. The latter states the relation between local substructure and activity, and is represented by conventional substructure match algorithms. Practically, the similarity of two molecules with similar activity depends on the contributions from both overall similarity and local substructure match. We report a new tool termed as a local-weighted structural alignment (LSA) tool for pharmaceutical virtual screening, which computes the similarity of two molecular structures by considering the contributions of both overall similarity and local substructure match. LSA consists of three steps: (1) mapping a common substructure between two molecular topological structures; (2) superimposing two three-dimensional molecular structures with substructure focus; (3) computing the similarity score based on superimposing. LSA has been validated with 102 testing compound libraries from DUD-E collection with the average AUC (the area under a receiver-operating characteristic curve) value of 0.82 and an average EF (the enrichment factor at top 1%) of 27.0, which had consistently better performance than conventional approaches. LSA is implemented in C++ and run on Linux and Windows systems.

摘要

具有相似活性的相似结构是鉴定新功能分子的一条准则。然而,微小的结构变化会导致显著的活性变化这种情况并不罕见。测量分子相似性的方法可分为基于整体三维形状的方法和基于局部子结构的方法这两类。前者阐述了整体相似性与活性之间的关系,由传统的相似性算法表示。后者阐述了局部子结构与活性之间的关系,由传统的子结构匹配算法表示。实际上,具有相似活性的两个分子的相似性取决于整体相似性和局部子结构匹配两者的贡献。我们报告了一种用于药物虚拟筛选的新工具,称为局部加权结构比对(LSA)工具,它通过考虑整体相似性和局部子结构匹配两者的贡献来计算两个分子结构的相似性。LSA 由三个步骤组成:(1)在两个分子拓扑结构之间映射一个共同子结构;(2)以子结构为重点叠加两个三维分子结构;(3)基于叠加计算相似性得分。LSA 已通过来自 DUD-E 集合的 102 个测试化合物库进行了验证,平均 AUC(受试者操作特征曲线下的面积)值为 0.82,平均 EF(前 1%的富集因子)为 27.0,其性能始终优于传统方法。LSA 用 C++实现,可在 Linux 和 Windows 系统上运行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f1/9060470/3ed6b81d02b1/c8ra08915a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验