Santori G, Valente R, Andorno E, Ghirelli R, Valente U
Department of Transplantation, San Martino University Hospital, Genoa, Italy.
Transplant Proc. 2007 Jul-Aug;39(6):1918-20. doi: 10.1016/j.transproceed.2007.05.027.
A Bayesian simulation model has been applied to a database developed for split liver transplantation on two adult recipients (SLT A/A) in the context of a macroregional project funded by the Italian Ministry of Health. The model was entered within Bayesian inference Using Gibbs Sampling (WinBUGS), a free software for Bayesian analysis of complex statistical models using Markov chain Monte Carlo techniques developed by the MRC Biostatistics Unit Cambridge jointly with the Imperial College School of Medicine at St Mary's, London. The model was built by using data entry performed from January 1, 2005 to August 5, 2005. In that period, 20 potential donors suitable for the SLT A/A procedure were entered into the database. We only selected the continuous and dichotomous donor-related variables (DRV, n = 62) for which almost one data entry procedure. The model assumed that a database user learned during data entry procedures for each donor, and that the probability of a successful input may depend on the number of previous errors and corrections. After binary transformation of the DRV (value 0 for each input record, value 1 for each no input record), we calculated an overall value of 0.28 +/- 0.27 (median: 0.3; 95% confidence interval: from 0.18 to 0.629). The transformed DRV were entered within the WinBUGS environment after model specification, assuming as success (y = 1) each procedure of input record, and as failure (y = 0) each procedure of no input record. A unequivocal convergence was obtained after 10,000 iterations, and a simulation run was launched for a further 10,000 updates. We obtained a negligible Monte Carlo error and a fine profile in the kernel density plot. This study supported the application of simulation models to databases concerning liver transplantation as a useful strategy to identify a critical state in the data entry process.
在意大利卫生部资助的一个宏观区域项目背景下,一个贝叶斯模拟模型已应用于为两名成年受者进行劈离式肝移植(SLT A/A)而开发的数据库。该模型通过使用吉布斯抽样(WinBUGS)进入贝叶斯推理,WinBUGS是一款免费软件,用于使用由剑桥医学研究委员会生物统计学组与伦敦圣玛丽医院帝国理工学院医学院联合开发的马尔可夫链蒙特卡罗技术对复杂统计模型进行贝叶斯分析。该模型是利用2005年1月1日至2005年8月5日期间进行的数据录入构建的。在此期间,20名适合SLT A/A手术的潜在供者被录入数据库。我们仅选择了与供者相关的连续和二分变量(DRV,n = 62),对于这些变量几乎有一个数据录入程序。该模型假定数据库用户在每个供者的数据录入过程中进行学习,并且成功输入的概率可能取决于先前错误和更正的数量。在对DRV进行二元转换(每个输入记录的值为0,每个无输入记录的值为1)后,我们计算出总体值为0.28±0.27(中位数:0.3;95%置信区间:从0.18至0.629)。在模型设定后,将转换后的DRV输入到WinBUGS环境中,假定每个输入记录的程序为成功(y = 1),每个无输入记录的程序为失败(y = 0)。经过10000次迭代后获得了明确的收敛,并进一步进行了10000次更新的模拟运行。我们获得了可忽略不计的蒙特卡罗误差和核密度图中的良好分布。本研究支持将模拟模型应用于肝移植相关数据库,作为识别数据录入过程中关键状态的有用策略。