Eaves Lindon, Erkanli Alaattin, Silberg Judy, Angold Adrian, Maes Hermine H, Foley Debra
Virginia Institute for Psychiatric and Behavioral Genetics, Department of Human Genetics, Virginia Commonwealth University, Richmond, VA 23298-0003, USA.
Behav Genet. 2005 Nov;35(6):765-80. doi: 10.1007/s10519-005-7284-z.
Several "genetic" item-response theory (IRT) models are fitted to the responses of 1086 adolescent female twins to the 33 multi-category item Mood and Feeling Questionnaire relating to depressive symptomatology in adolescence. A Markov-chain Monte Carlo (MCMC) algorithm is used within a Bayesian framework for inference using Gibbs sampling, implemented in the program WinBUGS 1.4. The final model incorporated separate genetic and non-shared environmental traits ("A and E") and item-specific genetic effects. Simpler models gave markedly poorer fit to the observations judged by the deviance information criterion (DIC). The common genetic factor showed major loadings on melancholic items, while the environmental factor loaded most highly on items relating to self-deprecation. The MCMC approach provides a convenient and flexible alternative to Maximum Likelihood for estimating the parameters of IRT models for relatively large numbers of items in a genetic context. Additional benefits of the IRT approach are discussed including the estimation of latent trait scores, including genetic factor scores, and their sampling errors.
几种“遗传”项目反应理论(IRT)模型被应用于1086对青春期女性双胞胎对33个多类别项目的情绪与感受问卷的回答,该问卷与青春期抑郁症状有关。在贝叶斯框架内使用马尔可夫链蒙特卡罗(MCMC)算法,通过吉布斯采样进行推断,该算法在WinBUGS 1.4程序中实现。最终模型纳入了单独的遗传和非共享环境特质(“A和E”)以及项目特定的遗传效应。根据偏差信息准则(DIC)判断,更简单的模型对观测值的拟合明显更差。共同遗传因素在抑郁性项目上有主要负荷,而环境因素在与自我贬低相关的项目上负荷最高。MCMC方法为在遗传背景下估计相对大量项目的IRT模型参数提供了一种方便且灵活的替代最大似然法的方法。还讨论了IRT方法的其他优点,包括潜在特质分数(包括遗传因素分数)的估计及其抽样误差。