Suppr超能文献

黄石国家公园温泉中的古菌和细菌甘油二烷基甘油四醚脂质

Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of yellowstone national park.

作者信息

Schouten Stefan, van der Meer Marcel T J, Hopmans Ellen C, Rijpstra W Irene C, Reysenbach Anna-Louise, Ward David M, Sinninghe Damsté Jaap S

机构信息

Department of Marine Biogeochemistry & Toxicology, Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands.

出版信息

Appl Environ Microbiol. 2007 Oct;73(19):6181-91. doi: 10.1128/AEM.00630-07. Epub 2007 Aug 10.

Abstract

Glycerol dialkyl glycerol tetraethers (GDGTs) are core membrane lipids originally thought to be produced mainly by (hyper)thermophilic archaea. Environmental screening of low-temperature environments showed, however, the abundant presence of structurally diverse GDGTs from both bacterial and archaeal sources. In this study, we examined the occurrences and distribution of GDGTs in hot spring environments in Yellowstone National Park with high temperatures (47 to 83 degrees C) and mostly neutral to alkaline pHs. GDGTs with 0 to 4 cyclopentane moieties were dominant in all samples and are likely derived from both (hyper)thermophilic Crenarchaeota and Euryarchaeota. GDGTs with 4 to 8 cyclopentane moieties, likely derived from the crenarchaeotal order Sulfolobales and the euryarchaeotal order Thermoplasmatales, are usually present in much lower abundance, consistent with the relatively high pH values of the hot springs. The relative abundances of cyclopentane-containing GDGTs did not correlate with in situ temperature and pH, suggesting that other environmental and possibly genetic factors play a role as well. Crenarchaeol, a biomarker thought to be specific for nonthermophilic group I Crenarchaeota, was also found in most hot springs, though in relatively low concentrations, i.e., <5% of total GDGTs. Its abundance did not correlate with temperature, as has been reported previously. Instead, the cooccurrence of relatively abundant nonisoprenoid GDGTs thought to be derived from soil bacteria suggests a predominantly allochthonous source for crenarchaeol in these hot spring environments. Finally, the distribution of bacterial branched GDGTs suggests that they may be derived from the geothermally heated soils surrounding the hot springs.

摘要

甘油二烷基甘油四醚(GDGTs)是核心膜脂,最初被认为主要由(超)嗜热古菌产生。然而,对低温环境的环境筛查表明,存在大量来自细菌和古菌来源的结构多样的GDGTs。在本研究中,我们调查了黄石国家公园高温(47至83摄氏度)且大多为中性至碱性pH值的温泉环境中GDGTs的出现情况和分布。具有0至4个环戊烷部分的GDGTs在所有样品中占主导地位,可能源自(超)嗜热泉古菌门和广古菌门。具有4至8个环戊烷部分的GDGTs,可能源自泉古菌目的硫化叶菌科和广古菌目的热原体目,其丰度通常要低得多,这与温泉相对较高的pH值一致。含环戊烷的GDGTs的相对丰度与原位温度和pH值无关,这表明其他环境因素以及可能的遗传因素也起作用。奇古菌醇,一种被认为是I组非嗜热泉古菌特有的生物标志物,在大多数温泉中也有发现,不过浓度相对较低,即占总GDGTs的不到5%。其丰度与温度无关,正如之前所报道的那样。相反,被认为源自土壤细菌的相对丰富的非异戊二烯GDGTs的共存表明,在这些温泉环境中,奇古菌醇主要来自外源。最后,细菌分支GDGTs的分布表明它们可能源自温泉周围地热加热的土壤。

相似文献

1
Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of yellowstone national park.
Appl Environ Microbiol. 2007 Oct;73(19):6181-91. doi: 10.1128/AEM.00630-07. Epub 2007 Aug 10.
3
Nonmarine crenarchaeol in Nevada hot springs.
Appl Environ Microbiol. 2004 Sep;70(9):5229-37. doi: 10.1128/AEM.70.9.5229-5237.2004.
4
Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs.
Appl Environ Microbiol. 2008 Jun;74(11):3523-32. doi: 10.1128/AEM.02450-07. Epub 2008 Apr 4.
5
In situ production of crenarchaeol in two california hot springs.
Appl Environ Microbiol. 2009 Jul;75(13):4443-51. doi: 10.1128/AEM.02591-08. Epub 2009 May 1.
7
Water table related variations in the abundance of intact archaeal membrane lipids in a Swedish peat bog.
FEMS Microbiol Lett. 2004 Oct 1;239(1):51-6. doi: 10.1016/j.femsle.2004.08.012.
10
Glycerol monoalkanediol diethers: a novel series of archaeal lipids detected in hydrothermal environments.
Rapid Commun Mass Spectrom. 2016 Jan 15;30(1):54-60. doi: 10.1002/rcm.7417.

引用本文的文献

1
Mode of carbon and energy metabolism shifts lipid composition in the thermoacidophile .
Appl Environ Microbiol. 2024 Feb 21;90(2):e0136923. doi: 10.1128/aem.01369-23. Epub 2024 Jan 18.
2
Membrane Adaptations and Cellular Responses of to the Allylamine Terbinafine.
Int J Mol Sci. 2023 Apr 15;24(8):7328. doi: 10.3390/ijms24087328.
3
The catalytic and structural basis of archaeal glycerophospholipid biosynthesis.
Extremophiles. 2022 Aug 17;26(3):29. doi: 10.1007/s00792-022-01277-w.
4
Archaeal lipids trace ecology and evolution of marine ammonia-oxidizing archaea.
Proc Natl Acad Sci U S A. 2022 Aug 2;119(31):e2123193119. doi: 10.1073/pnas.2123193119. Epub 2022 Jul 29.
5
Near-universal trends in brGDGT lipid distributions in nature.
Sci Adv. 2022 May 20;8(20):eabm7625. doi: 10.1126/sciadv.abm7625. Epub 2022 May 18.
8
Functionalized Membrane Domains: An Ancestral Feature of Archaea?
Front Microbiol. 2020 Mar 31;11:526. doi: 10.3389/fmicb.2020.00526. eCollection 2020.
9
Carbon Oxidation State in Microbial Polar Lipids Suggests Adaptation to Hot Spring Temperature and Redox Gradients.
Front Microbiol. 2020 Feb 20;11:229. doi: 10.3389/fmicb.2020.00229. eCollection 2020.

本文引用的文献

1
Early reactivation of European rivers during the last deglaciation.
Science. 2006 Sep 15;313(5793):1623-5. doi: 10.1126/science.1130511.
2
Archaea predominate among ammonia-oxidizing prokaryotes in soils.
Nature. 2006 Aug 17;442(7104):806-9. doi: 10.1038/nature04983.
3
A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents.
Nature. 2006 Jul 27;442(7101):444-7. doi: 10.1038/nature04921.
4
Thermophilic temperature optimum for crenarchaeol synthesis and its implication for archaeal evolution.
Appl Environ Microbiol. 2006 Jun;72(6):4419-22. doi: 10.1128/AEM.00191-06.
5
Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits.
Environ Microbiol. 2006 Apr;8(4):648-57. doi: 10.1111/j.1462-2920.2005.00941.x.
6
Ether lipids of planktonic archaea in the marine water column.
Appl Environ Microbiol. 1997 Aug;63(8):3090-5. doi: 10.1128/aem.63.8.3090-3095.1997.
8
Fate of immediate methane precursors in low-sulfate, hot-spring algal-bacterial mats.
Appl Environ Microbiol. 1981 Mar;41(3):775-82. doi: 10.1128/aem.41.3.775-782.1981.
9
10
Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount.
Int J Syst Evol Microbiol. 2005 Nov;55(Pt 6):2507-2514. doi: 10.1099/ijs.0.63432-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验