Suppr超能文献

甲酰胺嘧啶DNA糖基化酶(MutM)在下调分枝杆菌中G、C突变积累及抵抗氧化应激方面的独特作用。

A distinct role of formamidopyrimidine DNA glycosylase (MutM) in down-regulation of accumulation of G, C mutations and protection against oxidative stress in mycobacteria.

作者信息

Jain Ruchi, Kumar Pradeep, Varshney Umesh

机构信息

Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.

出版信息

DNA Repair (Amst). 2007 Dec 1;6(12):1774-85. doi: 10.1016/j.dnarep.2007.06.009. Epub 2007 Aug 16.

Abstract

Reactive oxygen species produced as a part of cellular metabolism or environmental agent cause a multitude of damages in cell. Oxidative damages to DNA or the free nucleotide pool result in occurrence of 7,8-dihydro-8-oxoguanine (8-oxoG) in DNA, and failure to replace it with the correct base results in a variety of mutations in the genome. Formamidopyrimidine DNA glycosylase (Fpg/MutM), a functionally conserved repair enzyme initiates the 8-oxoG repair pathway in all eubacteria. DNA in mycobacteria with G+C rich genomes is particularly vulnerable to the oxidative damage. In this study, we disrupted fpg gene in Mycobacterium smegmatis to generate an Fpg deficient strain. The strain showed an enhanced mutator phenotype and susceptibility to hydrogen peroxide. Analyses of rifampicin resistance determining region (RRDR) revealed that, in contrast to Fpg deficient Escherichia coli where C to A mutations predominate, Fpg deficient M. smegmatis shows a remarkable increase in accumulation of A to G (or T to C) mutations. Interestingly, exposure of the mutant to sub-lethal level of hydrogen peroxide results in a major shift towards C to G (or G to C) mutations. Biochemical analysis showed that mycobacterial Fpg; and MutY (which excises misincorporated A against 8-oxoG) possess substrate specificities similar to their counterparts in E. coli. However, the DNA polymerase assays with cell-free extracts showed preferential incorporation of G in M. smegmatis as opposed to an A in E. coli. Our studies highlight the importance and the distinctive features of Fpg mediated DNA repair in mycobacteria.

摘要

作为细胞代谢或环境因素一部分产生的活性氧会对细胞造成多种损害。对DNA或游离核苷酸池的氧化损伤会导致DNA中出现7,8-二氢-8-氧代鸟嘌呤(8-氧代鸟嘌呤),而未能用正确的碱基取代它会导致基因组中出现各种突变。甲酰胺嘧啶DNA糖基化酶(Fpg/MutM)是一种功能保守的修复酶,在所有真细菌中启动8-氧代鸟嘌呤修复途径。基因组富含G+C的分枝杆菌中的DNA特别容易受到氧化损伤。在本研究中,我们破坏了耻垢分枝杆菌中的fpg基因以产生Fpg缺陷菌株。该菌株表现出增强的突变体表型和对过氧化氢的敏感性。对利福平耐药决定区(RRDR)的分析表明,与以C到A突变为主要特征的Fpg缺陷大肠杆菌不同,Fpg缺陷的耻垢分枝杆菌中A到G(或T到C)突变的积累显著增加。有趣的是,将突变体暴露于亚致死水平的过氧化氢会导致主要向C到G(或G到C)突变转变。生化分析表明,分枝杆菌Fpg;以及MutY(切除针对8-氧代鸟嘌呤错配掺入的A)具有与其在大肠杆菌中的对应物相似的底物特异性。然而,无细胞提取物的DNA聚合酶测定表明,耻垢分枝杆菌中优先掺入G,而大肠杆菌中优先掺入A。我们的研究突出了分枝杆菌中Fpg介导的DNA修复的重要性和独特特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验