DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa.
DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa.
DNA Repair (Amst). 2014 Jan;13:32-41. doi: 10.1016/j.dnarep.2013.11.003. Epub 2013 Dec 15.
The increased prevalence of drug resistant strains of Mycobacterium tuberculosis (Mtb) indicates that significant mutagenesis occurs during tuberculosis disease in humans. DNA damage by host-derived reactive oxygen/nitrogen species is hypothesized to be critical for the mutagenic process in Mtb thus, highlighting an important role for DNA repair enzymes in maintenance of genome fidelity. Formamidopyrimidine (Fpg/MutM/Fapy) and EndonucleaseVIII (Nei) constitute the Fpg/Nei family of DNA glycosylases and together with EndonucleaseIII (Nth) are central to the base excision repair pathway in bacteria. In this study we assess the contribution of Nei and Nth DNA repair enzymes in Mycobacterium smegmatis (Msm), which retains a single nth homologue and duplications of the Fpg (fpg1 and fpg2) and Nei (nei1 and nei2) homologues. Using an Escherichia coli nth deletion mutant, we confirm the functionality of the mycobacterial nth gene in the base excision repair pathway. Msm mutants lacking nei1, nei2 and nth individually or in combination did not display aberrant growth in broth culture. Deletion of nth individually results in increased UV-induced mutagenesis and combinatorial deletion with the nei homologues results in reduced survival under oxidative stress conditions and an increase in spontaneous mutagenesis to rifampicin. Deletion of nth together with the fpg homolgues did not result in any growth/survival defects or changes in mutation rate. Furthermore, no differential emergence of the common rifampicin resistance conferring genotypes were noted. Collectively, these data confirm a role for Nth in base excision repair in mycobacteria and further highlight a novel interplay between the Nth and Nei homologues in spontaneous mutagenesis.
结核分枝杆菌(Mtb)耐药株的流行率增加表明,在人类结核病期间发生了显著的突变。宿主衍生的活性氧/氮物种引起的 DNA 损伤被认为对 Mtb 的诱变过程至关重要,因此突出了 DNA 修复酶在维持基因组保真度中的重要作用。甲酰嘧啶(Fpg/MutM/Fapy)和内切核酸酶 VIII(Nei)构成 Fpg/Nei 家族的 DNA 糖苷酶,与内切核酸酶 III(Nth)一起是细菌中碱基切除修复途径的核心。在这项研究中,我们评估了 Nei 和 Nth DNA 修复酶在耻垢分枝杆菌(Msm)中的贡献,Msm 保留了单个 nth 同源物和 Fpg(fpg1 和 fpg2)和 Nei(nei1 和 nei2)同源物的重复。使用大肠杆菌 nth 缺失突变体,我们证实了细菌 nth 基因在碱基切除修复途径中的功能。单独缺失 nei1、nei2 和 nth 的 Msm 突变体在肉汤培养中没有显示异常生长。单独缺失 nth 会导致 UV 诱导的突变增加,与 nei 同源物组合缺失会导致氧化应激条件下的存活能力降低和自发突变增加对利福平的敏感性。缺失 nth 与 fpg 同源物一起不会导致任何生长/存活缺陷或突变率变化。此外,没有注意到常见利福平耐药赋予基因型的差异出现。总之,这些数据证实了 Nth 在分枝杆菌碱基切除修复中的作用,并进一步强调了 Nth 和 Nei 同源物在自发突变中的新相互作用。