Wei Qiang, Hebda-Bauer Elaine K, Pletsch Amy, Luo Jie, Hoversten Mary T, Osetek Andrew J, Evans Simon J, Watson Stanley J, Seasholtz Audrey F, Akil Huda
Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.
J Neurosci. 2007 Aug 15;27(33):8836-44. doi: 10.1523/JNEUROSCI.0910-07.2007.
Repeated stress enhances vulnerability to neural dysfunction that is cumulative over the course of the lifespan. This dysfunction contributes to cognitive deficits observed during aging. In addition, aging is associated with dysregulation of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis, leading to a delayed termination of the stress response. This delay, in turn, increases exposure to glucocorticoids and exacerbates the likelihood of neural damage. Here we asked whether similar effects could emerge at an early age as a result of genetic variations in the level or function of the brain glucocorticoid receptor (GR). We investigated the effect of forebrain-specific overexpression of GR on LHPA axis activity. Transgenic mice with GR overexpression in forebrain (GRov) display normal basal circulating adrenocorticotropic hormone and corticosterone levels. However, young GRov mice exhibit a number of LHPA alterations, including a blunted initial response to acute restraint stress followed by a delayed turn-off of the stress response. This deficit in negative feedback is paradoxical in the face of elevated GR levels, resembles the stress response in aged animals, and continues to worsen as GRov mice age. The neuroendocrine dysregulation in young GRov mice is coupled with a mild cognitive deficit, also consistent with the accelerated aging hypothesis. The molecular basis of this phenotype was examined using microarray analysis of the hippocampus, which revealed a broad downregulation of glutamate receptor signaling in GRov mice. Thus, even in the absence of chronic stress, elevation of GR gene expression can lead to an increased allostatic load and result in an "aging-like" phenotype in young animals.
反复应激会增加对神经功能障碍的易感性,这种功能障碍在整个生命周期中会不断累积。这种功能障碍会导致衰老过程中出现认知缺陷。此外,衰老与边缘系统 - 下丘脑 - 垂体 - 肾上腺(LHPA)轴的调节异常有关,导致应激反应的终止延迟。反过来,这种延迟会增加糖皮质激素的暴露,并加剧神经损伤的可能性。在这里,我们探讨了由于大脑糖皮质激素受体(GR)水平或功能的基因变异,在幼年时是否会出现类似的影响。我们研究了前脑特异性过表达GR对LHPA轴活性的影响。前脑GR过表达的转基因小鼠(GRov)表现出正常的基础循环促肾上腺皮质激素和皮质酮水平。然而,幼年GRov小鼠表现出许多LHPA改变,包括对急性束缚应激的初始反应减弱,随后应激反应的关闭延迟。面对GR水平升高,这种负反馈缺陷是矛盾的,类似于老年动物的应激反应,并且随着GRov小鼠年龄的增长而持续恶化。幼年GRov小鼠的神经内分泌失调与轻度认知缺陷相关,这也与加速衰老假说一致。使用海马的微阵列分析检查了这种表型的分子基础,结果显示GRov小鼠中谷氨酸受体信号广泛下调。因此,即使在没有慢性应激的情况下,GR基因表达的升高也会导致应激负荷增加,并在幼年动物中导致“衰老样”表型。