Messens Joris, Collet Jean-Francois, Van Belle Karolien, Brosens Elke, Loris Remy, Wyns Lode
Brussels Center for Redox Biology, Vlaams Instituut voor Biotechnologie, Vrije Universiteit Brussel, 1050 Brussel, Belgium.
J Biol Chem. 2007 Oct 26;282(43):31302-7. doi: 10.1074/jbc.M705236200. Epub 2007 Aug 16.
One of the last unsolved problems of molecular biology is how the sequential amino acid information leads to a functional protein. Correct disulfide formation within a protein is hereby essential. We present periplasmic ribonuclease I (RNase I) from Escherichia coli as a new endogenous substrate for the study of oxidative protein folding. One of its four disulfides is between nonconsecutive cysteines. In general view, the folding of proteins with nonconsecutive disulfides requires the protein disulfide isomerase DsbC. In contrast, our study with RNase I shows that DsbA is a sufficient catalyst for correct disulfide formation in vivo and in vitro. DsbA is therefore more specific than generally assumed. Further, we show that the redox potential of the periplasm depends on the presence of glutathione and the Dsb proteins to maintain it at-165 mV. We determined the influence of this redox potential on the folding of RNase I. Under the more oxidizing conditions of dsb(-) strains, DsbC becomes necessary to correct non-native disulfides, but it cannot substitute for DsbA. Altogether, DsbA folds a protein with a nonconsecutive disulfide as long as no incorrect disulfides are formed.
分子生物学最后几个未解决的问题之一是连续的氨基酸信息如何产生功能性蛋白质。蛋白质内正确的二硫键形成在此至关重要。我们提出将来自大肠杆菌的周质核糖核酸酶I(RNase I)作为研究氧化蛋白质折叠的一种新的内源性底物。其四个二硫键之一位于不连续的半胱氨酸之间。一般来说,具有不连续二硫键的蛋白质折叠需要蛋白质二硫键异构酶DsbC。相比之下,我们对RNase I的研究表明,DsbA是体内和体外正确二硫键形成的充分催化剂。因此,DsbA比一般认为的更具特异性。此外,我们表明周质的氧化还原电位取决于谷胱甘肽和Dsb蛋白的存在,以将其维持在 -165 mV。我们确定了这种氧化还原电位对RNase I折叠的影响。在dsb(-)菌株更具氧化性的条件下,DsbC对于纠正非天然二硫键变得必要,但它不能替代DsbA。总之,只要不形成不正确的二硫键,DsbA就能折叠具有不连续二硫键的蛋白质。