Suppr超能文献

周质二硫键氧化还原酶的体内底物特异性

In vivo substrate specificity of periplasmic disulfide oxidoreductases.

作者信息

Hiniker Annie, Bardwell James C A

机构信息

Program in Cellular and Molecular Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109-1048, USA.

出版信息

J Biol Chem. 2004 Mar 26;279(13):12967-73. doi: 10.1074/jbc.M311391200. Epub 2004 Jan 15.

Abstract

In Escherichia coli, a family of periplasmic disulfide oxidoreductases catalyzes correct disulfide bond formation in periplasmic and secreted proteins. Despite the importance of native disulfide bonds in the folding and function of many proteins, a systematic investigation of the in vivo substrates of E. coli periplasmic disulfide oxidoreductases, including the well characterized oxidase DsbA, has not yet been performed. We combined a modified osmotic shock periplasmic extract and two-dimensional gel electrophoresis to identify substrates of the periplasmic oxidoreductases DsbA, DsbC, and DsbG. We found 10 cysteine-containing periplasmic proteins that are substrates of the disulfide oxidase DsbA, including PhoA and FlgI, previously established DsbA substrates. This technique did not detect any in vivo substrates of DsbG, but did identify two substrates of DsbC, RNase I and MepA. We confirmed that RNase I is a substrate of DsbC both in vivo and in vitro. This is the first time that DsbC has been shown to affect the in vivo function of a native E. coli protein, and the results strongly suggest that DsbC acts as a disulfide isomerase in vivo. We also demonstrate that DsbC, but not DsbG, is critical for the in vivo activity of RNase I, indicating that DsbC and DsbG do not function identically in vivo. The absence of substrates for DsbG suggests either that the in vivo substrate specificity of DsbG is more limited than that of DsbC or that DsbG is not active under the growth conditions tested. Our work represents one of the first times the in vivo substrate specificity of a folding catalyst system has been systematically investigated. Because our methodology is based on the simple assumption that the absence of a folding catalyst should cause its substrates to be present at decreased steady-state levels, this technique should be useful in analyzing the substrate specificity of any folding catalyst or chaperone for which mutations are available.

摘要

在大肠杆菌中,一类周质二硫键氧化还原酶催化周质蛋白和分泌蛋白中正确的二硫键形成。尽管天然二硫键在许多蛋白质的折叠和功能中很重要,但尚未对大肠杆菌周质二硫键氧化还原酶的体内底物进行系统研究,其中包括已得到充分表征的氧化酶DsbA。我们结合改良的渗透休克周质提取物和二维凝胶电泳来鉴定周质氧化还原酶DsbA、DsbC和DsbG的底物。我们发现了10种含半胱氨酸的周质蛋白是二硫键氧化酶DsbA的底物,包括PhoA和FlgI,它们是先前已确定的DsbA底物。该技术未检测到DsbG的任何体内底物,但确实鉴定出了DsbC的两种底物,即核糖核酸酶I(RNase I)和MepA。我们证实RNase I在体内和体外都是DsbC的底物。这是首次证明DsbC会影响天然大肠杆菌蛋白的体内功能,结果强烈表明DsbC在体内充当二硫键异构酶。我们还证明,DsbC而非DsbG对RNase I的体内活性至关重要,这表明DsbC和DsbG在体内的功能并不相同。未发现DsbG的底物表明,要么DsbG的体内底物特异性比DsbC更有限,要么DsbG在测试的生长条件下不具有活性。我们的工作代表了首次对折叠催化剂系统的体内底物特异性进行系统研究。由于我们的方法基于一个简单的假设,即缺乏折叠催化剂会导致其底物在稳态水平下降,因此该技术应有助于分析任何有可用突变的折叠催化剂或伴侣蛋白的底物特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验