Suppr超能文献

Chemical synthesis and hepatic biotransformation of 3 alpha,7 alpha-dihydroxy-7 beta-methyl-24-nor-5 beta-cholan-23-oic acid, a 7-methyl derivative of norchenodeoxycholic acid: studies in the hamster.

作者信息

Yoshii M, Mosbach E H, Schteingart C D, Hagey L R, Hofmann A F, Cohen B I, McSherry C K

机构信息

Department of Surgery, Beth Israel Medical Center, New York, NY 10003.

出版信息

J Lipid Res. 1991 Nov;32(11):1729-40.

PMID:1770293
Abstract

A new bile acid analogue, 3 alpha,7 alpha-dihydroxy-7 beta-methyl-24-nor-5 beta-cholan-23-oic acid (7-Me-norCDCA) was synthesized from the methyl ester of norursodeoxycholic acid, and its hepatic biotransformation was defined in the hamster. To synthesize 7-Me-norCDCA, the 3 alpha-hydroxyl group of methyl norursodeoxycholate was protected as the hemisuccinate, and the 7 beta-hydroxyl group was oxidized with CrO3 to form the 7-ketone. A Grigard reaction with methyl magnesium iodide followed by alkaline hydrolysis gave 7-Me-norCDCA (greater than 70% yield). The structure of the new compound was confirmed by proton magnetic resonance and mass spectrometry. After intraduodenal administration of the 14C-labeled compound into the anesthetized biliary fistula hamster, it was rapidly and efficiently secreted into the bile; 80% of radioactivity was recovered in 2 h. After intravenous infusion, the compound was efficiently extracted by the liver and secreted into the bile (greater than 75% in 3 h). Most (93%) of the biliary radioactivity was present in biotransformation products. The major biotransformation product (48.7 +/- 6.0%) was a new compound, assigned the structure of 3 alpha,5 beta,7 alpha- trihydroxy-7 beta-methyl-24-nor-5 beta-cholan-23-oic acid (5 beta-hydroxy-7- Me-norCDCA). In addition, conjugates of 7-Me-norCDCA with taurine (13.7 +/- 5.0%), sulfate (10.3 +/- 3.0%), or glucuronide (5.1 +/- 1.7%) were formed. 7-Me-norCDCA was strongly choleretic in the hamster; during its intravenous infusion, bile flow increased 2 to 3 times above the basal level, and the calculated choleretic activity of the compound (and its metabolic products) was much greater than that of many natural bile acids, indicating that the compound induced hypercholeresis. It is concluded that the biotransformation and physiological properties of 7-Me-norCDCA closely resemble those of norCDCA. Based on previous studies, the major biological effect of the 7-methyl group in 7-Me-norCDCA is to prevent its bacterial 7-dehydroxylation in the distal intestine.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验