Wang Jushuo, Sanger Jean M, Kang Songman, Thurston Harold, Abbott Lynn Z, Dube Dipak K, Sanger Joseph W
Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA.
Cell Motil Cytoskeleton. 2007 Oct;64(10):767-76. doi: 10.1002/cm.20221.
From the four known vertebrate tropomyosin genes (designated TPM1, TPM2, TPM3, and TPM4) over 20 isoforms can be generated. The predominant TPM1 isoform, TPM1alpha, is specifically expressed in both skeletal and cardiac muscles. A newly discovered alternatively spliced isoform, TPM1kappa, containing exon 2a instead of exon 2b contained in TPM1alpha, was found to be cardiac specific and developmentally regulated. In this work, we transfected quail skeletal muscle cells with green fluorescent proteins (GFP) coupled to chicken TPM1alpha and chicken TPM1kappa and compared their localizations in premyofibrils and mature myofibrils. We used the technique of fluorescence recovery after photobleaching (FRAP) to compare the dynamics of TPM1alpha and TPM1kappa in myotubes. TPM1alpha and TPM1kappa incorporated into premyofibrils, nascent myofibrils, and mature myofibrils of quail myotubes in identical patterns. The two tropomyosin isoforms have a higher exchange rate in premyofibrils than in mature myofibrils. F-actin and muscle tropomyosin are present in the same fibers at all three stages of myofibrillogenesis (premyofibrils, nascent myofibrils, mature myofibrils). In contrast, the tropomyosin-binding molecule nebulin is not present in the initial premyofibrils. Nebulin is gradually added during myofibrillogenesis, becoming fully localized in striated patterns by the mature myofibril stage. A model of thin filament formation is proposed to explain the increased stability of tropomyosin in mature myofibrils. These experiments are supportive of a maturing thin filament and stepwise model of myofibrillogenesis (premyofibrils to nascent myofibrils to mature myofibrils), and are inconsistent with models that postulate the immediate appearance of fully formed thin filaments or myofibrils.
从四个已知的脊椎动物原肌球蛋白基因(命名为TPM1、TPM2、TPM3和TPM4)可产生20多种同工型。主要的TPM1同工型TPM1α在骨骼肌和心肌中均有特异性表达。一种新发现的可变剪接同工型TPM1κ,包含外显子2a而非TPM1α中的外显子2b,被发现具有心脏特异性且受发育调控。在这项研究中,我们用与鸡TPM1α和鸡TPM1κ偶联的绿色荧光蛋白(GFP)转染鹌鹑骨骼肌细胞,并比较它们在肌原纤维前体和成熟肌原纤维中的定位。我们使用光漂白后荧光恢复(FRAP)技术比较TPM1α和TPM1κ在肌管中的动态变化。TPM1α和TPM1κ以相同模式整合到鹌鹑肌管的肌原纤维前体、新生肌原纤维和成熟肌原纤维中。这两种原肌球蛋白同工型在肌原纤维前体中的交换率高于成熟肌原纤维。在肌原纤维形成的所有三个阶段(肌原纤维前体、新生肌原纤维、成熟肌原纤维),F-肌动蛋白和肌肉原肌球蛋白都存在于同一纤维中。相比之下,原肌球蛋白结合分子伴肌动蛋白在最初的肌原纤维前体中不存在。伴肌动蛋白在肌原纤维形成过程中逐渐添加,到成熟肌原纤维阶段完全以条纹状定位。提出了一个细肌丝形成模型来解释原肌球蛋白在成熟肌原纤维中稳定性增加的原因。这些实验支持细肌丝成熟和肌原纤维形成的逐步模型(从肌原纤维前体到新生肌原纤维再到成熟肌原纤维),并且与假设完全形成的细肌丝或肌原纤维立即出现的模型不一致。