Kondo Jiro, Hainrichson Mariana, Nudelman Igor, Shallom-Shezifi Dalia, Barbieri Christopher M, Pilch Daniel S, Westhof Eric, Baasov Timor
Architecture et Réactivité de l'ARN, Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, CNRS, 15 rue René Descartes, 67084 Strasbourg, France.
Chembiochem. 2007 Sep 24;8(14):1700-9. doi: 10.1002/cbic.200700271.
The lack of absolute prokaryotic selectivity of natural antibiotics is widespread and is a significant clinical problem. The use of this disadvantage of aminoglycoside antibiotics for the possible treatment of human genetic diseases is extremely challenging. Here, we have used a combination of biochemical and structural analysis to compare and contrast the molecular mechanisms of action and the structure-activity relationships of a new synthetic aminoglycoside, NB33, and a structurally similar natural aminoglycoside apramycin. The data presented herein demonstrate the general molecular principles that determine the decreased selectivity of apramycin for the prokaryotic decoding site, and the increased selectivity of NB33 for the eukaryotic decoding site. These results are therefore extremely beneficial for further research on both the design of new aminoglycoside-based antibiotics with diminished deleterious effects on humans, as well as the design of new aminoglycoside-based structures that selectively target the eukaryotic ribosome.
天然抗生素缺乏绝对的原核生物选择性这一现象很普遍,是一个重大的临床问题。利用氨基糖苷类抗生素的这一缺点来治疗人类遗传疾病极具挑战性。在此,我们结合生化和结构分析,比较并对比了一种新型合成氨基糖苷类药物NB33和结构相似的天然氨基糖苷类药物阿普拉霉素的作用分子机制及构效关系。本文提供的数据揭示了决定阿普拉霉素对原核生物解码位点选择性降低以及NB33对真核生物解码位点选择性增加的一般分子原理。因此,这些结果对于进一步研究对人类有害影响较小的新型氨基糖苷类抗生素的设计,以及选择性靶向真核生物核糖体的新型氨基糖苷类结构的设计极为有益。