Suppr超能文献

骨骼肌中AMP激活的蛋白激酶与p38丝裂原活化蛋白激酶信号的解离

Dissociation of AMP-activated protein kinase and p38 mitogen-activated protein kinase signaling in skeletal muscle.

作者信息

Ho Richard C, Fujii Nobuharu, Witters Lee A, Hirshman Michael F, Goodyear Laurie J

机构信息

Research Division, Joslin Diabetes Center, Boston, MA 02215, USA.

出版信息

Biochem Biophys Res Commun. 2007 Oct 19;362(2):354-9. doi: 10.1016/j.bbrc.2007.07.154. Epub 2007 Aug 7.

Abstract

AMP-activated protein kinase (AMPK) is widely recognized as an important regulator of glucose transport in skeletal muscle. The p38 mitogen-activated protein kinase (MAPK) has been proposed to be a component of AMPK-mediated signaling. Here we used several different models of altered AMPK activity to determine whether p38 MAPK is a downstream intermediate of AMPK-mediated signaling in skeletal muscle. First, L6 myoblasts and myotubes were treated with AICAR, an AMPK stimulator. AMPK phosphorylation was significantly increased, but there was no change in p38 MAPK phosphorylation. Similarly, AICAR incubation of isolated rat extensor digitorum longus (EDL) muscles did not increase p38 phosphorylation. Next, we used transgenic mice expressing an inactive form of the AMPKalpha2 catalytic subunit in skeletal muscle (AMPKalpha2i TG mice). AMPKalpha2i TG mice did not exhibit any defect in basal or contraction-induced p38 MAPK phosphorylation. We also used transgenic mice expressing an activating mutation in the AMPKgamma1 subunit (gamma1R70Q TG mice). Despite activated AMPK, basal p38 MAPK phosphorylation was not different between wild type and gamma1R70Q TG mice. In addition, muscle contraction-induced p38 MAPK phosphorylation was significantly blunted in the gamma1R70Q TG mice. In conclusion, increasing AMPK activity by AICAR and AMPKgamma1 mutation does not increase p38 MAPK phosphorylation in skeletal muscle. Furthermore, AMPKalpha2i TG mice lacking contraction-stimulated AMPK activity have normal p38 MAPK phosphorylation. These results suggest that p38 MAPK is not a downstream component of AMPK-mediated signaling in skeletal muscle.

摘要

AMP激活的蛋白激酶(AMPK)被广泛认为是骨骼肌中葡萄糖转运的重要调节因子。p38丝裂原活化蛋白激酶(MAPK)被认为是AMPK介导信号传导的一个组成部分。在此,我们使用了几种不同的AMPK活性改变模型,以确定p38 MAPK是否是骨骼肌中AMPK介导信号传导的下游中间体。首先,用AMPK刺激剂AICAR处理L6成肌细胞和肌管。AMPK磷酸化显著增加,但p38 MAPK磷酸化没有变化。同样,用AICAR孵育分离的大鼠趾长伸肌(EDL)肌肉也不会增加p38磷酸化。接下来,我们使用了在骨骼肌中表达无活性形式的AMPKalpha2催化亚基的转基因小鼠(AMPKalpha2i TG小鼠)。AMPKalpha2i TG小鼠在基础或收缩诱导的p38 MAPK磷酸化方面没有表现出任何缺陷。我们还使用了在AMPKgamma1亚基中表达激活突变的转基因小鼠(gamma1R70Q TG小鼠)。尽管AMPK被激活,但野生型和gamma1R70Q TG小鼠之间的基础p38 MAPK磷酸化没有差异。此外,在gamma1R70Q TG小鼠中,肌肉收缩诱导的p38 MAPK磷酸化显著减弱。总之,通过AICAR和AMPKgamma1突变增加AMPK活性不会增加骨骼肌中的p38 MAPK磷酸化。此外,缺乏收缩刺激的AMPK活性 的AMPKalpha2i TG小鼠具有正常的p38 MAPK磷酸化。这些结果表明,p38 MAPK不是骨骼肌中AMPK介导信号传导的下游组成部分。

相似文献

1
Dissociation of AMP-activated protein kinase and p38 mitogen-activated protein kinase signaling in skeletal muscle.
Biochem Biophys Res Commun. 2007 Oct 19;362(2):354-9. doi: 10.1016/j.bbrc.2007.07.154. Epub 2007 Aug 7.
5
Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR.
Am J Physiol Endocrinol Metab. 2004 Aug;287(2):E310-7. doi: 10.1152/ajpendo.00074.2004. Epub 2004 Apr 6.
7
Stimulation of glucose transport by AMP-activated protein kinase via activation of p38 mitogen-activated protein kinase.
J Biol Chem. 2001 Nov 2;276(44):41029-34. doi: 10.1074/jbc.M102824200. Epub 2001 Sep 6.
8
AMP-activated protein kinase signaling stimulates VEGF expression and angiogenesis in skeletal muscle.
Circ Res. 2005 Apr 29;96(8):838-46. doi: 10.1161/01.RES.0000163633.10240.3b. Epub 2005 Mar 24.
9
AMPK activation with AICAR provokes an acute fall in plasma [K+].
Am J Physiol Cell Physiol. 2008 Jan;294(1):C126-35. doi: 10.1152/ajpcell.00464.2007. Epub 2007 Nov 14.
10
AICAR stimulates IL-6 production via p38 MAPK in cardiac fibroblasts in adult mice: a possible role for AMPK.
Biochem Biophys Res Commun. 2005 Dec 2;337(4):1139-44. doi: 10.1016/j.bbrc.2005.09.174. Epub 2005 Oct 6.

引用本文的文献

2
Activation of p38 in C2C12 myotubes following ATP depletion depends on extracellular glucose.
J Physiol Biochem. 2015 Jun;71(2):253-65. doi: 10.1007/s13105-015-0406-z. Epub 2015 Apr 4.
3
A Potent and Selective AMPK Activator That Inhibits de Novo Lipogenesis.
ACS Med Chem Lett. 2010 Aug 30;1(9):478-82. doi: 10.1021/ml100143q. eCollection 2010 Dec 9.
4
Localization and regulation of the N terminal splice variant of PGC-1α in adult skeletal muscle fibers.
J Biomed Biotechnol. 2012;2012:989263. doi: 10.1155/2012/989263. Epub 2012 Jan 29.
5
APPL1 mediates adiponectin-stimulated p38 MAPK activation by scaffolding the TAK1-MKK3-p38 MAPK pathway.
Am J Physiol Endocrinol Metab. 2011 Jan;300(1):E103-10. doi: 10.1152/ajpendo.00427.2010. Epub 2010 Oct 26.
6
Does long-term metformin treatment increase cardiac lipoprotein lipase?
Metabolism. 2011 Jan;60(1):32-42. doi: 10.1016/j.metabol.2009.12.015. Epub 2010 Feb 12.
7
Deficiency in TLR4 signal transduction ameliorates cardiac injury and cardiomyocyte contractile dysfunction during ischemia.
J Cell Mol Med. 2009 Aug;13(8A):1513-25. doi: 10.1111/j.1582-4934.2009.00798.x. Epub 2009 Jun 5.
8
Stretch-stimulated glucose uptake in skeletal muscle is mediated by reactive oxygen species and p38 MAP-kinase.
J Physiol. 2009 Jul 1;587(Pt 13):3363-73. doi: 10.1113/jphysiol.2008.165639. Epub 2009 Apr 29.

本文引用的文献

1
p38 mitogen-activated protein kinase mediates adenosine-induced alterations in myocardial glucose utilization via 5'-AMP-activated protein kinase.
Am J Physiol Heart Circ Physiol. 2007 Apr;292(4):H1978-85. doi: 10.1152/ajpheart.01121.2006. Epub 2006 Dec 15.
2
Genetic model for the chronic activation of skeletal muscle AMP-activated protein kinase leads to glycogen accumulation.
Am J Physiol Endocrinol Metab. 2007 Mar;292(3):E802-11. doi: 10.1152/ajpendo.00369.2006. Epub 2006 Nov 14.
4
AMP-activated protein kinase and the regulation of glucose transport.
Am J Physiol Endocrinol Metab. 2006 Nov;291(5):E867-77. doi: 10.1152/ajpendo.00207.2006. Epub 2006 Jul 5.
6
AICAR stimulates IL-6 production via p38 MAPK in cardiac fibroblasts in adult mice: a possible role for AMPK.
Biochem Biophys Res Commun. 2005 Dec 2;337(4):1139-44. doi: 10.1016/j.bbrc.2005.09.174. Epub 2005 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验