Chen Na, Napoli Joseph L
Nutritional Science and Toxicology, University of California, Berkeley, California 94720, USA.
FASEB J. 2008 Jan;22(1):236-45. doi: 10.1096/fj.07-8739com. Epub 2007 Aug 21.
Differentiation and patterning in the developing nervous system require the vitamin A metabolite all-trans-retinoic acid (atRA). Recent data suggest that higher cognitive functions, such as creation of hippocampal memory, also require atRA and its receptors, RAR, through affecting synaptic plasticity. Here we show that within 30 min atRA increased dendritic growth approximately 2-fold, and PSD-95 and synaptophysin puncta intensity approximately 3-fold, in cultured mouse hippocampal neurons, suggesting increased synapse formation. atRA (10 nM) increased ERK1/2 phosphorylation within 10 min. In synaptoneurosomes, atRA rapidly increased phosphorylation of ERK1/2, its target 4E-BP, and p70S6K, and its substrate, ribosome protein S6, indicating activation of MAPK and mammalian target of rapamycin (mTOR). Immunofluorescence revealed intense dendritic expression of RARalpha in the mouse hippocampus and localization of RARalpha on the surfaces of primary cultures of hippocampal neurons, with bright puncta along soma and neurites. Surface biotinylation confirmed the locus of RARalpha expression. Knockdown of RARalpha by shRNA impaired atRA-induced spine formation and abolished dendritic growth. Prolonged atRA stimulation reduced surface/total RARalpha by 43%, suggesting internalization, whereas brain-derived nerve growth factor or bicuculline increased the ratio by approximately 1.8-fold. atRA increased translation in the somatodendritic compartment, similar to brain-derived nerve growth factor. atRA specifically increased dendritic translation and surface expression of the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate receptor (AMPAR) subunit 1 (GluR1), without affecting GluR2. These data provide mechanistic insight into atRA function in the hippocampus and identify a unique membrane-associated RARalpha that mediates rapid induction of neuronal translation by atRA.
发育中的神经系统的分化和模式形成需要维生素A代谢产物全反式维甲酸(atRA)。最近的数据表明,更高的认知功能,如海马体记忆的形成,也需要atRA及其受体RAR,通过影响突触可塑性来实现。在这里,我们表明,在培养的小鼠海马神经元中,atRA在30分钟内使树突生长增加了约2倍,PSD-95和突触素斑点强度增加了约3倍,这表明突触形成增加。atRA(10 nM)在10分钟内增加了ERK1/2的磷酸化。在突触神经小体中,atRA迅速增加了ERK1/2、其靶点4E-BP和p70S6K以及其底物核糖体蛋白S6的磷酸化,表明丝裂原活化蛋白激酶(MAPK)和雷帕霉素哺乳动物靶点(mTOR)被激活。免疫荧光显示RARα在小鼠海马体中强烈的树突表达以及RARα在海马神经元原代培养物表面的定位,在胞体和神经突上有明亮的斑点。表面生物素化证实了RARα的表达位点。通过短发夹RNA(shRNA)敲低RARα会损害atRA诱导的棘突形成并消除树突生长。长时间的atRA刺激使表面/总RARα减少了43%,表明其内化,而脑源性神经生长因子或荷包牡丹碱使该比例增加了约1.8倍。atRA增加了树突-胞体区域的翻译,类似于脑源性神经生长因子。atRA特异性地增加了α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)亚基1(GluR1)的树突翻译和表面表达,而不影响GluR2。这些数据为atRA在海马体中的功能提供了机制性见解,并确定了一种独特的膜相关RARα,它介导atRA对神经元翻译的快速诱导。