Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305-5453.
Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305-5453.
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):7113-7122. doi: 10.1073/pnas.1820690116. Epub 2019 Feb 19.
Homeostatic synaptic plasticity is a stabilizing mechanism engaged by neural circuits in response to prolonged perturbation of network activity. The non-Hebbian nature of homeostatic synaptic plasticity is thought to contribute to network stability by preventing "runaway" Hebbian plasticity at individual synapses. However, whether blocking homeostatic synaptic plasticity indeed induces runaway Hebbian plasticity in an intact neural circuit has not been explored. Furthermore, how compromised homeostatic synaptic plasticity impacts animal learning remains unclear. Here, we show in mice that the experience of an enriched environment (EE) engaged homeostatic synaptic plasticity in hippocampal circuits, thereby reducing excitatory synaptic transmission. This process required RARα, a nuclear retinoic acid receptor that doubles as a cytoplasmic retinoic acid-induced postsynaptic regulator of protein synthesis. Blocking RARα-dependent homeostatic synaptic plasticity during an EE experience by ablating RARα signaling induced runaway Hebbian plasticity, as evidenced by greatly enhanced long-term potentiation (LTP). As a consequence, RARα deletion in hippocampal circuits during an EE experience resulted in enhanced spatial learning but suppressed learning flexibility. In the absence of RARα, moreover, EE experience superactivated mammalian target of rapamycin (mTOR) signaling, causing a shift in protein translation that enhanced the expression levels of AMPA-type glutamate receptors. Treatment of mice with the mTOR inhibitor rapamycin during an EE experience not only restored normal AMPA-receptor expression levels but also reversed the increases in runaway Hebbian plasticity and learning after hippocampal RARα deletion. Thus, our findings reveal an RARα- and mTOR-dependent mechanism by which homeostatic plasticity controls Hebbian plasticity and learning.
稳态突触可塑性是神经回路在网络活动长时间扰动时所采用的一种稳定机制。稳态突触可塑性的非赫布式特性被认为通过防止单个突触的“失控”赫布式可塑性,有助于网络稳定。然而,阻断稳态突触可塑性是否确实会在完整的神经回路中引发失控的赫布式可塑性尚未得到探索。此外,稳态突触可塑性的受损如何影响动物学习仍不清楚。在这里,我们在小鼠中表明,丰富环境(EE)的体验会引发海马回路中的稳态突触可塑性,从而减少兴奋性突触传递。这个过程需要 RARα,一种核视黄酸受体,同时也是细胞质视黄酸诱导的蛋白合成的突触后调节物。通过消除 RARα 信号阻断 EE 体验期间的 RARα 依赖性稳态突触可塑性,会诱导失控的赫布式可塑性,这表现为长时程增强(LTP)大大增强。因此,在 EE 体验期间,海马回路中的 RARα 缺失会增强空间学习,但抑制学习灵活性。此外,在没有 RARα 的情况下,EE 体验会超激活哺乳动物雷帕霉素靶蛋白(mTOR)信号通路,导致蛋白质翻译的转变,从而增强 AMPA 型谷氨酸受体的表达水平。在 EE 体验期间用 mTOR 抑制剂雷帕霉素处理小鼠,不仅恢复了正常的 AMPA 受体表达水平,而且逆转了海马 RARα 缺失后失控的赫布式可塑性和学习的增加。因此,我们的研究结果揭示了一种 RARα 和 mTOR 依赖性机制,通过该机制稳态可塑性控制赫布式可塑性和学习。