Csucs Gabor, Quirin Katharina, Danuser Gaudenz
Laboratory for Biomechanics, Department of Mechanical Engineering, ETH Zurich, 8952 Schlieren, Switzerland.
Cell Motil Cytoskeleton. 2007 Nov;64(11):856-67. doi: 10.1002/cm.20230.
Cell migration results from forces generated by assembly, contraction, and adhesion of the cytoskeleton. To address how these forces integrate in space and time, novel assays are required that allow spatial separation of the different force categories. We used micro-contact printing of fibronectin on glass substrates to study the effect of adhesion patterns on fish epidermal keratocytes locomotion. Cells migrated at similar speeds on homogeneously adhesive substrates and on patterns with 5 microm-wide adhesive stripes interleaved by non-adhesive stripes with a width varied between 5 and 13 microm. The leading edge protruded on adhesive stripes and lagged behind on non-adhesive stripes. On patterns with non-adhesive stripes wider than 13 microm cells halted, although the lamellipodium did not collapse. High correlation was found between the widths of protruding and lagging edge segments and the widths of the underlying stripes. We explain our data by the force balances between actin polymerization, contraction and adhesion on fibronectin stripes; and between actin polymerization, contraction and lamellipodium-internal elastic tension on non-adhesive stripes. We tested our model further by blocking lamellipodium actin network contraction and polymerization. In both experiments we observed that cells eventually lost their ability to move. However, the two perturbations induced distinct morphological responses. The data suggested that forces powering forward motion of keratocytes are largely associated with network assembly whereas contraction maintains cell polarity. This study establishes spatially selective adhesion substrates and cell morphological readouts as a means to elucidate the mechanical balance between substrate adhesion and cytoskeleton-internal tension in cell migration.
细胞迁移源于细胞骨架的组装、收缩和黏附所产生的力。为了研究这些力如何在空间和时间上整合,需要新的检测方法,以实现对不同力类型的空间分离。我们利用在玻璃基板上微接触印刷纤连蛋白,来研究黏附模式对鱼类表皮角质形成细胞运动的影响。细胞在均匀黏附的基板上以及在具有5微米宽的黏附条纹与宽度在5至13微米之间变化的非黏附条纹交错排列的模式上,以相似的速度迁移。细胞前缘在黏附条纹上突出,而在非黏附条纹上滞后。在非黏附条纹宽度大于13微米的模式上,细胞停止迁移,尽管片状伪足并未塌陷。我们发现突出边缘段和滞后边缘段的宽度与下层条纹的宽度之间具有高度相关性。我们通过纤连蛋白条纹上肌动蛋白聚合、收缩和黏附之间的力平衡,以及非黏附条纹上肌动蛋白聚合、收缩和片状伪足内部弹性张力之间的力平衡来解释我们的数据。我们通过阻断片状伪足肌动蛋白网络收缩和聚合进一步测试了我们的模型。在这两个实验中,我们都观察到细胞最终失去了移动能力。然而,这两种扰动引发了不同的形态学反应。数据表明,驱动角质形成细胞向前运动的力在很大程度上与网络组装相关,而收缩维持细胞极性。本研究建立了空间选择性黏附基板和细胞形态学读数,作为阐明细胞迁移中基板黏附与细胞骨架内部张力之间机械平衡的一种手段。