Liu Allen P, Chaudhuri Ovijit, Parekh Sapun H
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
Integr Biol (Camb). 2017 May 22;9(5):383-405. doi: 10.1039/c6ib00251j.
The extracellular matrix (ECM) provides structural and biochemical support to cells within tissues. An emerging body of evidence has established that the ECM plays a key role in cell mechanotransduction - the study of coupling between mechanical inputs and cellular phenotype - through either mediating transmission of forces to the cells, or presenting mechanical cues that guide cellular behaviors. Recent progress in cell mechanotransduction research has been facilitated by advances of experimental tools, particularly microtechnologies, engineered biomaterials, and imaging and analytical methods. Microtechnologies have enabled the design and fabrication of controlled physical microenvironments for the study and measurement of cell-ECM interactions. Advances in engineered biomaterials have allowed researchers to develop synthetic ECMs that mimic tissue microenvironments and investigate the impact of altered physicochemical properties on various cellular processes. Finally, advanced imaging and spectroscopy techniques have facilitated the visualization of the complex interaction between cells and ECM in vitro and in living tissues. This review will highlight the application of recent innovations in these areas to probing cell-ECM interactions. We believe cross-disciplinary approaches, combining aspects of the different technologies reviewed here, will inspire innovative ideas to further elucidate the secrets of ECM-mediated cell control.
细胞外基质(ECM)为组织内的细胞提供结构和生化支持。越来越多的证据表明,ECM在细胞机械转导(研究机械输入与细胞表型之间的耦合)中起着关键作用,它要么介导力向细胞的传递,要么呈现引导细胞行为的机械信号。实验工具的进步,特别是微技术、工程生物材料以及成像和分析方法的进步,推动了细胞机械转导研究的最新进展。微技术使得设计和制造可控的物理微环境成为可能,用于研究和测量细胞与ECM的相互作用。工程生物材料的进展使研究人员能够开发模拟组织微环境的合成ECM,并研究物理化学性质改变对各种细胞过程的影响。最后,先进的成像和光谱技术有助于在体外和活体组织中可视化细胞与ECM之间的复杂相互作用。本综述将重点介绍这些领域近期创新在探究细胞与ECM相互作用方面的应用。我们相信,结合本文所综述的不同技术方面的跨学科方法,将激发创新思维,进一步阐明ECM介导的细胞控制的奥秘。