Suppr超能文献

基于非织造支架的工程心脏瓣膜组织细胞外基质硬度预测

Prediction of extracellular matrix stiffness in engineered heart valve tissues based on nonwoven scaffolds.

作者信息

Engelmayr George C, Sacks Michael S

机构信息

Engineered Tissue Mechanics Laboratory (ETML), Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 100 Technology Drive, Suite 200, Pittsburgh, PA 15219, USA.

出版信息

Biomech Model Mechanobiol. 2008 Aug;7(4):309-21. doi: 10.1007/s10237-007-0102-1. Epub 2007 Aug 23.

Abstract

The in vitro development of tissue engineered heart valves (TEHV) exhibiting appropriate structural and mechanical characteristics remains a significant challenge. An important step yet to be addressed is establishing the relationship between scaffold and extracellular matrix (ECM) mechanical properties. In the present study, a composite beam model accounting for nonwoven scaffold-ECM coupling and the transmural collagen concentration distribution was developed, and utilized to retrospectively estimate the ECM effective stiffness in TEHV specimens incubated under static and cyclic flexure conditions (Engelmayr Jr et~al. in Biomaterials 26(2):175-187 2005). The ECM effective stiffness was expressed as the product of the local collagen concentration and the collagen specific stiffness (i.e., stiffness/concentration), and was related to the overall TEHV effective stiffness via an empirically determined scaffold-ECM coupling parameter and measured transmural collagen concentration distributions. The scaffold-ECM coupling parameter was determined by flexural mechanical testing of polyacrylamide gels (i.e., ECM analogs) of variable stiffness and associated scaffold-polyacrylamide gel composites (i.e., engineered tissue analogs). The transmural collagen concentration distributions were quantified from fluorescence micrographs of picro-sirius red stained TEHV sections. As suggested by a previous structural model of the nonwoven scaffold (Engelmayr Jr and Sacks in J Biomech Eng 128(4):610-622, 2006), nonwoven scaffold-ECM composites did not follow a traditional rule of mixtures. The present study provided further evidence that the primary mode of reinforcement in nonwoven scaffold-ECM composites is an increase in the number fiber-fiber bonds with a concomitant increase in the effective stiffness of the spring-like fiber segments. Simulations of potential ECM deposition scenarios using the current model indicated that the present approach is sensitive to the specific time course of tissue deposition, and is thus very suitable for studies of ECM formation in engineered heart valve tissues.

摘要

开发出具有适当结构和机械特性的组织工程心脏瓣膜(TEHV)的体外培养仍然是一项重大挑战。尚未解决的一个重要步骤是建立支架与细胞外基质(ECM)机械性能之间的关系。在本研究中,开发了一种考虑非织造支架 - ECM耦合和跨壁胶原浓度分布的复合梁模型,并用于回顾性估计在静态和循环弯曲条件下培养的TEHV标本中的ECM有效刚度(Engelmayr Jr等人,《生物材料》26(2):175 - 187,2005)。ECM有效刚度表示为局部胶原浓度与胶原比刚度(即刚度/浓度)的乘积,并通过经验确定的支架 - ECM耦合参数和测量的跨壁胶原浓度分布与整体TEHV有效刚度相关。支架 - ECM耦合参数通过对可变刚度的聚丙烯酰胺凝胶(即ECM类似物)和相关的支架 - 聚丙烯酰胺凝胶复合材料(即工程组织类似物)进行弯曲力学测试来确定。跨壁胶原浓度分布通过苦味酸天狼星红染色的TEHV切片的荧光显微照片进行量化。正如先前非织造支架的结构模型所表明的(Engelmayr Jr和Sacks,《生物医学工程杂志》128(4):610 - 622,2006),非织造支架 - ECM复合材料并不遵循传统的混合法则。本研究提供了进一步的证据,表明非织造支架 - ECM复合材料中的主要增强模式是纤维 - 纤维键数量的增加以及弹簧状纤维段有效刚度的相应增加。使用当前模型对潜在的ECM沉积情况进行模拟表明,本方法对组织沉积的特定时间过程敏感,因此非常适合用于研究工程心脏瓣膜组织中的ECM形成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验