Suppr超能文献

沙漠果蝇中近期复制的附属腺蛋白基因的适应性进化。

Adaptive evolution of recently duplicated accessory gland protein genes in desert Drosophila.

作者信息

Wagstaff Bradley J, Begun David J

机构信息

Section of Integrative Biology, University of Texas, Austin, Texas 78712, USA.

出版信息

Genetics. 2007 Oct;177(2):1023-30. doi: 10.1534/genetics.107.077503. Epub 2007 Aug 24.

Abstract

The relationship between animal mating system variation and patterns of protein polymorphism and divergence is poorly understood. Drosophila provides an excellent system for addressing this issue, as there is abundant interspecific mating system variation. For example, compared to D. melanogaster subgroup species, repleta group species have higher remating rates, delayed sexual maturity, and several other interesting differences. We previously showed that accessory gland protein genes (Acp's) of Drosophila mojavensis and D. arizonae evolve more rapidly than Acp's in the D. melanogaster subgroup and that adaptive Acp protein evolution is likely more common in D. mojavensis/D. arizonae than in D. melanogaster/D. simulans. These findings are consistent with the idea that greater postcopulatory selection results in more adaptive evolution of seminal fluid proteins in the repleta group flies. Here we report another interesting evolutionary difference between the repleta group and the D. melanogaster subgroup Acp's. Acp gene duplications are present in D. melanogaster, but their high sequence divergence indicates that the fixation rate of duplicated Acp's has been low in this lineage. Here we report that D. mojavensis and D. arizonae genomes contain several very young duplicated Acp's and that these Acp's have experienced very rapid, adaptive protein divergence. We propose that rapid remating of female desert Drosophila generates selection for continuous diversification of the male Acp complement to improve male fertilization potential. Thus, mating system variation may be associated with adaptive protein divergence as well as with duplication of Acp's in Drosophila.

摘要

动物交配系统变异与蛋白质多态性和分化模式之间的关系目前还知之甚少。果蝇为解决这一问题提供了一个绝佳的系统,因为种间交配系统变异十分丰富。例如,与黑腹果蝇亚组物种相比,果实蝇组物种具有更高的再次交配率、性成熟延迟以及其他一些有趣的差异。我们之前表明,莫哈韦果蝇和亚利桑那果蝇的附属腺蛋白基因(Acp's)比黑腹果蝇亚组中的Acp's进化得更快,并且适应性Acp蛋白进化在莫哈韦果蝇/亚利桑那果蝇中可能比在黑腹果蝇/拟暗果蝇中更为常见。这些发现与以下观点一致,即更强的交配后选择导致果实蝇组果蝇精液蛋白有更多的适应性进化。在此我们报告果实蝇组和黑腹果蝇亚组Acp's之间另一个有趣的进化差异。黑腹果蝇中存在Acp基因重复,但它们的高序列差异表明重复的Acp's在该谱系中的固定率较低。在此我们报告,莫哈韦果蝇和亚利桑那果蝇的基因组包含几个非常年轻的重复Acp's,并且这些Acp's经历了非常快速的适应性蛋白分化。我们提出,雌性沙漠果蝇的快速再次交配产生了对雄性Acp补充物持续多样化的选择,以提高雄性的受精潜力。因此,交配系统变异可能与适应性蛋白分化以及果蝇中Acp's的重复有关。

相似文献

1
Adaptive evolution of recently duplicated accessory gland protein genes in desert Drosophila.
Genetics. 2007 Oct;177(2):1023-30. doi: 10.1534/genetics.107.077503. Epub 2007 Aug 24.
3
Molecular population genetics of male accessory gland proteins in the Drosophila simulans complex.
Genetics. 2004 Jun;167(2):725-35. doi: 10.1534/genetics.103.020883.
4
Recently evolved genes identified from Drosophila yakuba and D. erecta accessory gland expressed sequence tags.
Genetics. 2006 Mar;172(3):1675-81. doi: 10.1534/genetics.105.050336. Epub 2005 Dec 15.
5
Molecular evolution and population genetics of duplicated accessory gland protein genes in Drosophila.
Mol Biol Evol. 2004 Sep;21(9):1625-8. doi: 10.1093/molbev/msh195. Epub 2004 Jun 23.
6
Molecular population genetics of male accessory gland proteins in Drosophila.
Genetics. 2000 Dec;156(4):1879-88. doi: 10.1093/genetics/156.4.1879.
7
Rapid evolution of genomic Acp complement in the melanogaster subgroup of Drosophila.
Mol Biol Evol. 2005 Oct;22(10):2010-21. doi: 10.1093/molbev/msi201. Epub 2005 Jun 29.
8
Molecular evolution of candidate genes involved in post-mating-prezygotic reproductive isolation.
J Evol Biol. 2015 Feb;28(2):403-14. doi: 10.1111/jeb.12574. Epub 2015 Jan 30.
9
Genomics of parallel adaptation at two timescales in Drosophila.
PLoS Genet. 2017 Oct 2;13(10):e1007016. doi: 10.1371/journal.pgen.1007016. eCollection 2017 Oct.
10
Duplication, selection and gene conversion in a Drosophila mojavensis female reproductive protein family.
Genetics. 2009 Apr;181(4):1451-65. doi: 10.1534/genetics.108.099044. Epub 2009 Feb 9.

引用本文的文献

1
Discovering novel reproductive genes in a non-model fly using GridION transcriptomics.
Front Genet. 2022 Dec 7;13:1003771. doi: 10.3389/fgene.2022.1003771. eCollection 2022.
2
On how to identify a seminal fluid protein: A commentary on Hurtado et al.
Insect Mol Biol. 2022 Oct;31(5):533-536. doi: 10.1111/imb.12783. Epub 2022 Aug 17.
3
Fifty years of sperm competition: the structure of a scientific revolution.
Philos Trans R Soc Lond B Biol Sci. 2020 Dec 7;375(1813):20200060. doi: 10.1098/rstb.2020.0060. Epub 2020 Oct 19.
4
Positive Selection in the Evolution of Mammalian CRISPs.
J Mol Evol. 2018 Dec;86(9):635-645. doi: 10.1007/s00239-018-9872-6. Epub 2018 Oct 28.
6
The Goddard and Saturn Genes Are Essential for Drosophila Male Fertility and May Have Arisen De Novo.
Mol Biol Evol. 2017 May 1;34(5):1066-1082. doi: 10.1093/molbev/msx057.
7
Sexual conflict and seminal fluid proteins: a dynamic landscape of sexual interactions.
Cold Spring Harb Perspect Biol. 2014 Dec 11;7(2):a017533. doi: 10.1101/cshperspect.a017533.
8
Synthesis, depletion and cell-type expression of a protein from the male accessory glands of the dengue vector mosquito Aedes aegypti.
J Insect Physiol. 2014 Nov;70:117-24. doi: 10.1016/j.jinsphys.2014.07.004. Epub 2014 Aug 5.
10
Rates of evolution of hominoid seminal proteins are correlated with function and expression, rather than mating system.
J Mol Evol. 2014 Jan;78(1):87-99. doi: 10.1007/s00239-013-9602-z. Epub 2013 Nov 27.

本文引用的文献

2
PHYLOGENETIC EXAMINATION OF FEMALE INCORPORATION OF EJACULATE IN DROSOPHILA.
Evolution. 1997 Jun;51(3):833-845. doi: 10.1111/j.1558-5646.1997.tb03665.x.
3
SPERM DISPLACEMENT WITHOUT SPERM TRANSFER IN DROSOPHILA MELANOGASTER.
Evolution. 1994 Jun;48(3):758-766. doi: 10.1111/j.1558-5646.1994.tb01359.x.
4
EVOLUTION OF MULTIPLE KINDS OF FEMALE SPERM-STORAGE ORGANS IN DROSOPHILA.
Evolution. 1999 Dec;53(6):1804-1822. doi: 10.1111/j.1558-5646.1999.tb04564.x.
5
Drosophila males contribute to oogenesis in a multiple mating species.
Science. 1984 Apr 20;224(4646):302-3. doi: 10.1126/science.224.4646.302.
7
Cross-species comparison of Drosophila male accessory gland protein genes.
Genetics. 2005 Sep;171(1):131-43. doi: 10.1534/genetics.105.043844. Epub 2005 Jun 8.
8
Comparative genomics of accessory gland protein genes in Drosophila melanogaster and D. pseudoobscura.
Mol Biol Evol. 2005 Apr;22(4):818-32. doi: 10.1093/molbev/msi067. Epub 2004 Dec 15.
9
Sperm survival in female stalk-eyed flies depends on seminal fluid and meiotic drive.
Evolution. 2004 Jul;58(7):1622-6. doi: 10.1111/j.0014-3820.2004.tb01743.x.
10
Molecular population genetics of male accessory gland proteins in the Drosophila simulans complex.
Genetics. 2004 Jun;167(2):725-35. doi: 10.1534/genetics.103.020883.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验