Suppr超能文献

拟果蝇复合体中雄性附腺蛋白的分子群体遗传学

Molecular population genetics of male accessory gland proteins in the Drosophila simulans complex.

作者信息

Kern Andrew D, Jones Corbin D, Begun David J

机构信息

Center for Population Biology, University of California, Davis, 95616, USA.

出版信息

Genetics. 2004 Jun;167(2):725-35. doi: 10.1534/genetics.103.020883.

Abstract

Accessory gland proteins are a major component of Drosophila seminal fluid. These proteins have a variety of functions and may be subject to sexual selection and/or antagonistic evolution between the sexes. Most population genetic data from these proteins are from D. melanogaster and D. simulans. Here, we extend the population genetic analysis of Acp genes to the other simulans complex species, D. mauritiana and D. sechellia. We sequenced population samples of seven Acp's from D. mauritiana, D. sechellia, and D. simulans. We investigated the population genetics of these genes on individual simulans complex lineages and compared Acp polymorphism and divergence to polymorphism and divergence from a set of non-Acp loci in the same species. Polymorphism and divergence data from the simulans complex revealed little evidence for adaptive protein evolution at individual loci. However, we observed a dramatically inflated index of dispersion for amino acid substitutions in the simulans complex at Acp genes, but not at non-Acp genes. This pattern of episodic bursts of protein evolution in Acp's provides the strongest evidence to date that the population genetic mechanisms driving Acp divergence are different from the mechanisms driving evolution at most Drosophila genes.

摘要

附属腺蛋白是果蝇精液的主要成分。这些蛋白具有多种功能,可能受到性选择和/或两性之间的对抗性进化影响。关于这些蛋白的大多数群体遗传学数据来自黑腹果蝇和拟暗果蝇。在此,我们将附属腺蛋白(Acp)基因的群体遗传学分析扩展到其他拟暗果蝇复合种,即毛里求斯果蝇和塞舌尔果蝇。我们对来自毛里求斯果蝇、塞舌尔果蝇和拟暗果蝇的7个Acp基因的群体样本进行了测序。我们研究了这些基因在各个拟暗果蝇复合种谱系上的群体遗传学,并将Acp基因的多态性和分化与同一物种中一组非Acp基因座的多态性和分化进行了比较。拟暗果蝇复合种的多态性和分化数据几乎没有显示出个别基因座上适应性蛋白质进化的证据。然而,我们观察到拟暗果蝇复合种中Acp基因的氨基酸替换离散指数显著升高,而非Acp基因则没有。Acp基因中这种阶段性蛋白质进化爆发的模式提供了迄今为止最有力的证据,表明驱动Acp基因分化的群体遗传机制与驱动大多数果蝇基因进化的机制不同。

相似文献

1
Molecular population genetics of male accessory gland proteins in the Drosophila simulans complex.
Genetics. 2004 Jun;167(2):725-35. doi: 10.1534/genetics.103.020883.
2
Molecular evolution and population genetics of duplicated accessory gland protein genes in Drosophila.
Mol Biol Evol. 2004 Sep;21(9):1625-8. doi: 10.1093/molbev/msh195. Epub 2004 Jun 23.
3
Rapid evolution of genomic Acp complement in the melanogaster subgroup of Drosophila.
Mol Biol Evol. 2005 Oct;22(10):2010-21. doi: 10.1093/molbev/msi201. Epub 2005 Jun 29.
4
Fast protein evolution and germ line expression of a Drosophila parental gene and its young retroposed paralog.
Mol Biol Evol. 2006 Nov;23(11):2191-202. doi: 10.1093/molbev/msl090. Epub 2006 Aug 17.
5
Common pattern of evolution of gene expression level and protein sequence in Drosophila.
Mol Biol Evol. 2004 Jul;21(7):1308-17. doi: 10.1093/molbev/msh128. Epub 2004 Mar 19.
6
Adaptive evolution of recently duplicated accessory gland protein genes in desert Drosophila.
Genetics. 2007 Oct;177(2):1023-30. doi: 10.1534/genetics.107.077503. Epub 2007 Aug 24.
8
Adaptive protein evolution in Drosophila.
Nature. 2002 Feb 28;415(6875):1022-4. doi: 10.1038/4151022a.
9
Molecular population genetics of male accessory gland proteins in Drosophila.
Genetics. 2000 Dec;156(4):1879-88. doi: 10.1093/genetics/156.4.1879.

引用本文的文献

2
The Origin and Evolution of Sex Peptide and Sex Peptide Receptor Interactions.
Mol Biol Evol. 2024 Apr 2;41(4). doi: 10.1093/molbev/msae065.
3
The Origin and Evolution of Sex Peptide and Sex Peptide Receptor Interactions.
bioRxiv. 2024 Feb 23:2023.11.19.567744. doi: 10.1101/2023.11.19.567744.
6
Supervised machine learning reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia.
PLoS Genet. 2018 Apr 23;14(4):e1007341. doi: 10.1371/journal.pgen.1007341. eCollection 2018 Apr.
7
Positive selection and comparative molecular evolution of reproductive proteins from New Zealand tree weta (Orthoptera, Hemideina).
PLoS One. 2017 Nov 13;12(11):e0188147. doi: 10.1371/journal.pone.0188147. eCollection 2017.

本文引用的文献

1
Genomic effects of nucleotide substitutions in Drosophila simulans.
Genetics. 2002 Dec;162(4):1753-61. doi: 10.1093/genetics/162.4.1753.
2
Sperm competition and the maintenance of polymorphism.
Heredity (Edinb). 2002 Feb;88(2):148-53. doi: 10.1038/sj.hdy.6800019.
3
The rapid evolution of reproductive proteins.
Nat Rev Genet. 2002 Feb;3(2):137-44. doi: 10.1038/nrg733.
5
Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila.
Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7375-9. doi: 10.1073/pnas.131568198. Epub 2001 Jun 12.
6
7
The population genetics of the origin and divergence of the Drosophila simulans complex species.
Genetics. 2000 Dec;156(4):1913-31. doi: 10.1093/genetics/156.4.1913.
8
Molecular population genetics of male accessory gland proteins in Drosophila.
Genetics. 2000 Dec;156(4):1879-88. doi: 10.1093/genetics/156.4.1879.
9
Genetic drift in an infinite population. The pseudohitchhiking model.
Genetics. 2000 Jun;155(2):909-19. doi: 10.1093/genetics/155.2.909.
10
Reduced X-linked nucleotide polymorphism in Drosophila simulans.
Proc Natl Acad Sci U S A. 2000 May 23;97(11):5960-5. doi: 10.1073/pnas.97.11.5960.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验