Suppr超能文献

三种小麦品种和水稻中Pm3基因座的进化速率对比

Contrasting rates of evolution in Pm3 loci from three wheat species and rice.

作者信息

Wicker Thomas, Yahiaoui Nabila, Keller Beat

机构信息

Institute of Plant Biology, University of Zürich, 8008 Zürich, Switzerland.

出版信息

Genetics. 2007 Oct;177(2):1207-16. doi: 10.1534/genetics.107.077354. Epub 2007 Aug 24.

Abstract

The Pm3 gene from wheat confers resistance against powdery mildew and recent studies have shown that it is a member of a multigene family in the wheat genome. We compared genomic sequences ranging from 178 to 332 kb containing six Pm3-like genes and five gene fragments from orthologous loci in the A genome of wheat at three different ploidy levels. We found that the wheat Pm3 loci display an extremely dynamic evolution where sequence conservation is minimal between species and basically limited to very short sequences containing the genetic markers that define the orthology. The Pm3-like genes and their up- and downstream regions were reshuffled by multiple rearrangements, resulting in a complex mosaic of conserved and unique sequences. Comparison with rice showed that the known wheat Pm3-like genes represent only one branch of a large superfamily with several clusters in rice and suggests the presence of additional similar genes in the wheat genome. Estimates of divergence times and transposable-element insertions indicate that the Pm3 locus in wheat has undergone more drastic changes in its recent evolution than its counterpart in rice. This indicates that loci containing homologous resistance gene analogs can evolve at highly variable speeds in different species.

摘要

小麦中的Pm3基因赋予对白粉病的抗性,最近的研究表明它是小麦基因组中一个多基因家族的成员。我们比较了三个不同倍性水平的小麦A基因组中包含六个Pm3-like基因和五个来自直系同源位点的基因片段的178至332 kb的基因组序列。我们发现小麦Pm3位点呈现出极其动态的进化,物种间的序列保守性极低,基本仅限于包含定义直系同源性的遗传标记的非常短的序列。Pm3-like基因及其上下游区域通过多次重排而重新组合,形成了保守序列和独特序列的复杂镶嵌。与水稻的比较表明,已知的小麦Pm3-like基因仅代表一个大型超家族的一个分支,水稻中有几个簇,这表明小麦基因组中存在其他类似基因。分歧时间和转座元件插入的估计表明,小麦中的Pm3位点在其最近的进化过程中比水稻中的对应位点经历了更剧烈的变化。这表明含有同源抗性基因类似物的位点在不同物种中可以以高度可变的速度进化。

相似文献

1
Contrasting rates of evolution in Pm3 loci from three wheat species and rice.
Genetics. 2007 Oct;177(2):1207-16. doi: 10.1534/genetics.107.077354. Epub 2007 Aug 24.
2
Independent evolution of functional Pm3 resistance genes in wild tetraploid wheat and domesticated bread wheat.
Plant J. 2009 Mar;57(5):846-56. doi: 10.1111/j.1365-313X.2008.03731.x. Epub 2008 Oct 29.
4
Rapid generation of new powdery mildew resistance genes after wheat domestication.
Plant J. 2006 Jul;47(1):85-98. doi: 10.1111/j.1365-313X.2006.02772.x. Epub 2006 Jun 1.
6
Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat.
Plant Physiol. 2005 Oct;139(2):885-95. doi: 10.1104/pp.105.062406. Epub 2005 Sep 23.
8
Transgenic Pm3 multilines of wheat show increased powdery mildew resistance in the field.
Plant Biotechnol J. 2012 May;10(4):398-409. doi: 10.1111/j.1467-7652.2011.00670.x. Epub 2011 Dec 18.
9
Pack-MULE transposable elements mediate gene evolution in plants.
Nature. 2004 Sep 30;431(7008):569-73. doi: 10.1038/nature02953.
10
Map-based isolation of disease resistance genes from bread wheat: cloning in a supersize genome.
Genet Res. 2005 Apr;85(2):93-100. doi: 10.1017/S0016672305007391.

引用本文的文献

1
Tightly linked Rps12 and Rps13 genes provide broad-spectrum Phytophthora resistance in soybean.
Sci Rep. 2021 Aug 19;11(1):16907. doi: 10.1038/s41598-021-96425-1.
2
Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity.
Plant Mol Biol. 2018 Oct;98(3):249-260. doi: 10.1007/s11103-018-0780-3. Epub 2018 Sep 22.
3
4
A physical map of the short arm of wheat chromosome 1A.
PLoS One. 2013 Nov 21;8(11):e80272. doi: 10.1371/journal.pone.0080272. eCollection 2013.
6
Separating homeologs by phasing in the tetraploid wheat transcriptome.
Genome Biol. 2013 Jun 25;14(6):R66. doi: 10.1186/gb-2013-14-6-r66.
8
Structure and evolution of barley powdery mildew effector candidates.
BMC Genomics. 2012 Dec 11;13:694. doi: 10.1186/1471-2164-13-694.
9
Organization and molecular evolution of a disease-resistance gene cluster in coffee trees.
BMC Genomics. 2011 May 16;12:240. doi: 10.1186/1471-2164-12-240.
10
Identification and molecular mapping of a resistance gene to powdery mildew from the synthetic wheat line M53.
J Appl Genet. 2011 May;52(2):137-43. doi: 10.1007/s13353-010-0006-0. Epub 2010 Nov 6.

本文引用的文献

1
Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene.
Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1424-9. doi: 10.1073/pnas.0608580104. Epub 2007 Jan 12.
2
The plant immune system.
Nature. 2006 Nov 16;444(7117):323-9. doi: 10.1038/nature05286.
3
Types and rates of sequence evolution at the high-molecular-weight glutenin locus in hexaploid wheat and its ancestral genomes.
Genetics. 2006 Nov;174(3):1493-504. doi: 10.1534/genetics.106.060756. Epub 2006 Oct 8.
4
Rapid generation of new powdery mildew resistance genes after wheat domestication.
Plant J. 2006 Jul;47(1):85-98. doi: 10.1111/j.1365-313X.2006.02772.x. Epub 2006 Jun 1.
6
Map-based isolation of disease resistance genes from bread wheat: cloning in a supersize genome.
Genet Res. 2005 Apr;85(2):93-100. doi: 10.1017/S0016672305007391.
8
Recombination events generating a novel Rp1 race specificity.
Mol Plant Microbe Interact. 2005 Mar;18(3):220-8. doi: 10.1094/MPMI-18-0220.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验