Dvorak Jan, Akhunov Eduard D, Akhunov Alina R, Deal Karin R, Luo Ming-Cheng
Department of Plant Sciences, University of California, Davis, USA.
Mol Biol Evol. 2006 Jul;23(7):1386-96. doi: 10.1093/molbev/msl004. Epub 2006 May 4.
All forms of domesticated tetraploid wheat (Triticum turgidum, genomes AABB) are nearly monomorphic for restriction fragment length polymorphism (RFLP) haplotype a at the Xpsr920 locus on chromosome 4A (Xpsr920-A1a), and wild tetraploid wheat is monomorphic for haplotype b. The Xpsr920-A1a/b dimorphism provides a molecular marker for domesticated and wild tetraploid wheat, respectively. Hexaploid wheat (Triticum aestivum, genomes AABBDD) is polymorphic for the 2 haplotypes. Bacterial artificial chromosome (BAC) clones hybridizing with PSR920 were isolated from Triticum urartu (genomes AA), Triticum monococcum (genomes AmAm), and T. turgidum ssp. durum (genomes AABB) and sequenced. PSR920 is a fragment of a putative ATP binding cassette (ABC) transporter gene (designated ABCT-1). The wheat ABCT-1 gene is more similar to the T. urartu gene than to the T. monococcum gene and diverged from the T. urartu gene about 0.7 MYA. The comparison of the sequence of the wheat A genome BAC clone with that of the T. urartu BAC clone provides the first insight into the microsynteny of the wheat A genome with that of T. urartu. Within 103 kb of orthologous intergenic space, 37 kb of new DNA has been inserted and 36 kb deleted leaving 49.7% of the region syntenic between the clones. The nucleotide substitution rate in the syntenic intergenic space has been 1.6 x 10(-8) nt(-1) year(-1), which is, respectively, 4 and 3 times as great as nucleotide substitution rates in the introns and the third codon positions of the juxtaposed gene. The RFLP is caused by a miniature inverted transposable element (MITE) insertion into intron 18 of the ABCT-A1 gene. Polymerase chain reaction primers were developed for the amplification of the MITE insertion site and its sequencing. The T. aestivum ABCT-A1a haplotype is identical to the haplotype of domesticated tetraploid wheat, and the ABCT-A1b haplotype is identical to that of wild tetraploid wheat. This finding shows for the first time that wild tetraploid wheat participated in the evolution of hexaploid wheat. A cline of the 2 haplotype frequencies exists across Euro-Asia in T. aestivum. It is suggested that T. aestivum in eastern Asia conserved the gene pool of the original T. aestivum more than wheat elsewhere.
所有驯化的四倍体小麦(普通小麦,基因组为AABB)在4A染色体上的Xpsr920位点(Xpsr920 - A1a)的限制性片段长度多态性(RFLP)单倍型a几乎是单态的,而野生四倍体小麦对于单倍型b是单态的。Xpsr920 - A1a/b二态性分别为驯化和野生四倍体小麦提供了一个分子标记。六倍体小麦(普通小麦,基因组为AABBDD)对于这两种单倍型具有多态性。从乌拉尔图小麦(基因组为AA)、一粒小麦(基因组为AmAm)和硬粒小麦(基因组为AABB)中分离出与PSR920杂交的细菌人工染色体(BAC)克隆并进行测序。PSR920是一个假定的ATP结合盒(ABC)转运蛋白基因(命名为ABCT - 1)的片段。小麦ABCT - 1基因与乌拉尔图小麦的基因比与一粒小麦的基因更相似,并且在大约0.7百万年前从乌拉尔图小麦的基因中分化出来。将小麦A基因组BAC克隆的序列与乌拉尔图小麦BAC克隆的序列进行比较,首次揭示了小麦A基因组与乌拉尔图小麦基因组的微观共线性。在103 kb的直系同源基因间隔区内,插入了37 kb的新DNA,删除了36 kb,使得两个克隆之间该区域的共线性为49.7%。共线性基因间隔区内的核苷酸替换率为1.6×10⁻⁸ nt⁻¹ year⁻¹,分别是并列基因内含子和第三密码子位置核苷酸替换率的4倍和3倍。RFLP是由一个微型反向转座元件(MITE)插入到ABCT - A1基因的第18内含子中引起的。开发了聚合酶链反应引物用于扩增MITE插入位点并对其进行测序。普通小麦的ABCT - A1a单倍型与驯化四倍体小麦的单倍型相同,ABCT - A1b单倍型与野生四倍体小麦的单倍型相同。这一发现首次表明野生四倍体小麦参与了六倍体小麦的进化。在普通小麦中,这两种单倍型频率在欧亚大陆上存在渐变群。有人认为,东亚的普通小麦比其他地方的小麦更多地保留了原始普通小麦的基因库。