Borin Alessandra, Ferrão Marco Flôres, Mello Cesar, Maretto Danilo Althmann, Poppi Ronei Jesus
Instituto de Química, Universidade Estadual de Campinas, C.P. 6154, CEP 13083-970 Campinas, SP, Brazil.
Anal Chim Acta. 2006 Oct 2;579(1):25-32. doi: 10.1016/j.aca.2006.07.008. Epub 2006 Jul 10.
This paper proposes the use of the least-squares support vector machine (LS-SVM) as an alternative multivariate calibration method for the simultaneous quantification of some common adulterants (starch, whey or sucrose) found in powdered milk samples, using near-infrared spectroscopy with direct measurements by diffuse reflectance. Due to the spectral differences of the three adulterants a nonlinear behavior is present when all groups of adulterants are in the same data set, making the use of linear methods such as partial least squares regression (PLSR) difficult. Excellent models were built using LS-SVM, with low prediction errors and superior performance in relation to PLSR. These results show it possible to built robust models to quantify some common adulterants in powdered milk using near-infrared spectroscopy and LS-SVM as a nonlinear multivariate calibration procedure.
本文提出使用最小二乘支持向量机(LS-SVM)作为一种替代的多元校准方法,用于同时定量奶粉样品中发现的一些常见掺假物(淀粉、乳清或蔗糖),采用近红外光谱通过漫反射进行直接测量。由于三种掺假物的光谱差异,当所有掺假物组都在同一数据集中时会出现非线性行为,这使得使用诸如偏最小二乘回归(PLSR)等线性方法变得困难。使用LS-SVM建立了出色的模型,与PLSR相比具有较低的预测误差和卓越的性能。这些结果表明,使用近红外光谱和LS-SVM作为非线性多元校准程序,可以建立稳健的模型来定量奶粉中的一些常见掺假物。