Suppr超能文献

以17β-羟类固醇脱氢酶3为治疗前列腺癌的靶受体,通过遗传算法-支持向量机对其抑制剂进行定量构效关系研究。

QSAR Study of 17β-HSD3 Inhibitors by Genetic Algorithm-Support Vector Machine as a Target Receptor for the Treatment of Prostate Cancer.

作者信息

Pourbasheer Eslam, Vahdani Saadat, Malekzadeh Davood, Aalizadeh Reza, Ebadi Amin

机构信息

Department of Chemistry, Payame Noor University Tehran, Iran.

Department of Chemistry, Islamic Azad University-North Tehran Branch, Tehran, Iran.

出版信息

Iran J Pharm Res. 2017 Summer;16(3):966-980.

Abstract

The 17β-HSD3 enzyme plays a key role in treatment of prostate cancer and small inhibitors can be used to efficiently target it. In the present study, the multiple linear regression (MLR), and support vector machine (SVM) methods were used to interpret the chemical structural functionality against the inhibition activity of some 17β-HSD3inhibitors. Chemical structural information were described through various types of molecular descriptors and genetic algorithm (GA) was applied to decrease the complexity of inhibition pathway to a few relevant molecular descriptors. Non-linear method (GA-SVM) showed to be better than the linear (GA-MLR) method in terms of the internal and the external prediction accuracy. The SVM model, with high statistical significance (R = 0.938; R = 0.870), was found to be useful for estimating the inhibition activity of 17β-HSD3 inhibitors. The models were validated rigorously through leave-one-out cross-validation and several compounds as external test set. Furthermore, the external predictive power of the proposed model was examined by considering modified R and concordance correlation coefficient values, Golbraikh and Tropsha acceptable model criteria's, and an extra evaluation set from an external data set. Applicability domain of the linear model was carefully defined using Williams plot. Moreover, Euclidean based applicability domain was applied to define the chemical structural diversity of the evaluation set and training set.

摘要

17β-羟类固醇脱氢酶3(17β-HSD3)在前列腺癌治疗中起关键作用,小分子抑制剂可有效靶向该酶。在本研究中,采用多元线性回归(MLR)和支持向量机(SVM)方法来阐释化学结构功能与某些17β-HSD3抑制剂抑制活性之间的关系。通过各类分子描述符描述化学结构信息,并应用遗传算法(GA)降低抑制途径的复杂性,以得到少数几个相关分子描述符。就内部和外部预测准确性而言,非线性方法(GA-SVM)比线性方法(GA-MLR)表现更好。具有高统计学显著性(R = 0.938;R = 0.870)的SVM模型被发现可用于估算17β-HSD3抑制剂的抑制活性。通过留一法交叉验证和几种化合物作为外部测试集对模型进行了严格验证。此外,通过考虑修正的R值和一致性相关系数值、Golbraikh和Tropsha可接受模型标准以及来自外部数据集的额外评估集,检验了所提模型的外部预测能力。使用Williams图仔细定义了线性模型的适用域。此外,基于欧几里得距离的适用域被用于定义评估集和训练集的化学结构多样性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/5610752/35a9ec4db788/ijpr-16-0966-g004.jpg

相似文献

2
QSAR study of HCV NS5B polymerase inhibitors using the genetic algorithm-multiple linear regression (GA-MLR).
EXCLI J. 2016 Jan 18;15:38-53. doi: 10.17179/excli2015-731. eCollection 2016.
3
Application of GA-MLR for QSAR Modeling of the Arylthioindole Class of Tubulin Polymerization Inhibitors as Anticancer Agents.
Anticancer Agents Med Chem. 2017;17(4):552-565. doi: 10.2174/1871520616666160811162105.
4
QSAR study on melanocortin-4 receptors by support vector machine.
Eur J Med Chem. 2010 Mar;45(3):1087-93. doi: 10.1016/j.ejmech.2009.12.003. Epub 2009 Dec 23.
5
Combinatorial QSAR of ambergris fragrance compounds.
J Chem Inf Comput Sci. 2004 Mar-Apr;44(2):582-95. doi: 10.1021/ci034203t.
6
Predictive QSAR modeling of CCR5 antagonist piperidine derivatives using chemometric tools.
J Enzyme Inhib Med Chem. 2009 Feb;24(1):205-23. doi: 10.1080/14756360802051297.
8
Evaluation of QSAR Equations for Virtual Screening.
Int J Mol Sci. 2020 Oct 22;21(21):7828. doi: 10.3390/ijms21217828.
9
Genetic Algorithm and Self-Organizing Maps for QSPR Study of Some N-aryl Derivatives as Butyrylcholinesterase Inhibitors.
Curr Drug Discov Technol. 2016;13(4):232-253. doi: 10.2174/1570163813666160725114241.
10
A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine.
Bioorg Med Chem. 2007 Dec 15;15(24):7746-54. doi: 10.1016/j.bmc.2007.08.057. Epub 2007 Sep 1.

引用本文的文献

1
In Silico Insights: QSAR Modeling of TBK1 Kinase Inhibitors for Enhanced Drug Discovery.
J Chem Inf Model. 2024 Oct 14;64(19):7488-7502. doi: 10.1021/acs.jcim.4c00864. Epub 2024 Sep 17.
4
Development of QSAR machine learning-based models to forecast the effect of substances on malignant melanoma cells.
Oncol Lett. 2019 May;17(5):4188-4196. doi: 10.3892/ol.2019.10068. Epub 2019 Feb 25.

本文引用的文献

1
3D-QSAR analysis of MCD inhibitors by CoMFA and CoMSIA.
Comb Chem High Throughput Screen. 2015;18(8):751-66. doi: 10.2174/1386207318666150803141738.
2
Application of a genetic algorithm and an artificial neural network for global prediction of the toxicity of phenols to .
Monatsh Chem. 2009;140(11):1279-1288. doi: 10.1007/s00706-009-0185-8. Epub 2009 Oct 13.
3
3D-QSAR and docking studies on adenosine A2A receptor antagonists by the CoMFA method.
SAR QSAR Environ Res. 2015 Jun;26(6):461-77. doi: 10.1080/1062936X.2015.1049666. Epub 2015 Jun 8.
5
Quantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machine.
Eur J Pharm Sci. 2012 Sep 29;47(2):421-9. doi: 10.1016/j.ejps.2012.06.021. Epub 2012 Jul 6.
6
Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.
IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):582-96. doi: 10.1109/TPAMI.2012.137. Epub 2012 Jun 26.
7
Overexpression of 17β-hydroxysteroid dehydrogenase type 1 increases the exposure of endometrial cancer to 17β-estradiol.
J Clin Endocrinol Metab. 2012 Apr;97(4):E591-601. doi: 10.1210/jc.2011-2994. Epub 2012 Feb 22.
8
17β-Hydroxysteroid dehydrogenases (17β-HSDs) as therapeutic targets: protein structures, functions, and recent progress in inhibitor development.
J Steroid Biochem Mol Biol. 2011 May;125(1-2):66-82. doi: 10.1016/j.jsbmb.2010.12.013. Epub 2010 Dec 28.
9
QSAR study of C allosteric binding site of HCV NS5B polymerase inhibitors by support vector machine.
Mol Divers. 2011 Aug;15(3):645-53. doi: 10.1007/s11030-010-9283-0. Epub 2010 Oct 8.
10
17ß-hydroxysteroid dehydrogenase inhibitors.
Minerva Endocrinol. 2010 Jun;35(2):87-108.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验