Date M, Schmid U D, Hess C W, Schmid J
Department of Neurology, University Hospital, Berne, Switzerland.
Electroencephalogr Clin Neurophysiol Suppl. 1991;43:212-23.
The influence of afferent median nerve stimulation on the responses of small hand muscles (CMAPs) to cortical stimulation (CortStim) was investigated by applying short stimulus trains to the median nerve at the wrist and slightly suprathreshold magnetic stimuli to the scalp. Train stimulus frequency (TSF), train stimulus intensity (TSI), and train onset (TO) in relation to the CortStim were varied. Amplitudes and latencies of CMAPs were compared with those obtained by CortStim alone. When applying short trains of 10 msec duration, of 300/sec-400/sec TSF, and of threshold or supramaximal intensity for motor fibers, both facilitatory and inhibitory effects on the responses to CortStim were achieved depending on the timing of the train onset. With a TO of 8-10 msec before CortStim, mean amplitudes of CMAPs were enhanced 3-10 times; mean amplitudes reached up to 20 times the baseline values when the TO was greater than 45 msec before CortStim. With a TO of 15-35 msec before CortStim, amplitudes were diminished below control values. No systematic changes in latency were noted with TO of 8-10 msec, but when the TO was 45-60 msec before CortStim the latencies of CMAPs were 1.5-3 msec shorter than baseline latencies. With afferent stimuli that were subthreshold for motor fibers facilitation only occurred when the TO was about 45 msec before CortStim. The differences were statistically significant (Wilcoxon-Mann-Whitney Test). This biphasic pattern of facilitation and inhibition probably reflects spinal and supraspinal reflex phenomena mediated by spindle receptor and various cutaneous afferents.