Welford Richard W D, Lam Angel, Mirica Liviu M, Klinman Judith P
Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
Biochemistry. 2007 Sep 25;46(38):10817-27. doi: 10.1021/bi700943r. Epub 2007 Aug 31.
The mechanism of the first electron transfer from reduced cofactor to O2 in the catalytic cycle of copper amine oxidases (CAOs) remains controversial. Two possibilities have been proposed. In the first mechanism, the reduced aminoquinol form of the TPQ cofactor transfers an electron to the copper, giving radical semiquinone and Cu(I), the latter of which reduces O2 (pathway 1). The second mechanism invokes direct transfer of the first electron from the reduced aminoquinol form of the TPQ cofactor to O2 (pathway 2). The debate over these mechanisms has arisen, in part, due to variable experimental observations with copper amine oxidases from plant versus other eukaryotic sources. One important difference is the position of the aminoquinol/Cu(II) to semiquinone/Cu(I) equilibrium on anaerobic reduction with amine substrate, which varies from almost 0% to 40% semiquinone/Cu(I). In this study we have shown how protein structure controls this equilibrium by making a single-point mutation at a second-sphere ligand to the copper, D630N in Hansenula polymorpha amine oxidase, which greatly increases the concentration of the cofactor semiquinone/Cu(I) following anaerobic reduction by substrate. The catalytic properties of this mutant, including 18O kinetic isotope effects, point to a conservation of pathway 2, despite the elevated production of the cofactor semiqunone/Cu(I). Changes in kcat/Km[O2] are attributed to an impact of D630N on an increased affinity of O2 for its hydrophobic pocket. The data in this study indicate that changes in cofactor semiquinone/Cu(I) levels are not sufficient to alter the mechanism of O2 reduction and illuminate how subtle features are able to control the reduction potential of active site metals in proteins.
在铜胺氧化酶(CAOs)的催化循环中,从还原型辅因子到O₂的首次电子转移机制仍存在争议。已提出两种可能性。在第一种机制中,TPQ辅因子的还原型氨基喹啉形式将一个电子转移给铜,生成自由基半醌和Cu(I),后者再还原O₂(途径1)。第二种机制是TPQ辅因子的还原型氨基喹啉形式直接将第一个电子转移给O₂(途径2)。关于这些机制的争论部分源于来自植物与其他真核生物来源的铜胺氧化酶的实验观察结果存在差异。一个重要的区别是在胺底物厌氧还原时,氨基喹啉/Cu(II)到半醌/Cu(I)平衡的位置,半醌/Cu(I)的比例从几乎0%到40%不等。在本研究中,我们通过在多形汉逊酵母胺氧化酶中对铜的第二配位层配体进行单点突变D630N,展示了蛋白质结构是如何控制这种平衡的,该突变极大地增加了底物厌氧还原后辅因子半醌/Cu(I)的浓度。尽管辅因子半醌/Cu(I)的产量增加,但该突变体的催化特性,包括¹⁸O动力学同位素效应,表明途径2得以保留。kcat/Km[O₂]的变化归因于D630N对O₂与其疏水口袋亲和力增加的影响。本研究中的数据表明,辅因子半醌/Cu(I)水平的变化不足以改变O₂还原的机制,并阐明了细微特征如何能够控制蛋白质中活性位点金属的还原电位。