Mukherjee Arnab, Smirnov Valeriy V, Lanci Michael P, Brown Doreen E, Shepard Eric M, Dooley David M, Roth Justine P
Department of Chemistry, Johns Hopkins University, 3400 North Charles St., Baltimore, Maryland 21218, USA.
J Am Chem Soc. 2008 Jul 23;130(29):9459-73. doi: 10.1021/ja801378f. Epub 2008 Jun 27.
Copper and topaquinone (TPQ) containing amine oxidases utilize O2 for the metabolism of biogenic amines while concomitantly generating H2O2 for use by the cell. The mechanism of O2 reduction has been the subject of long-standing debate due to the obscuring influence of a proton-coupled electron transfer between the tyrosine-derived TPQ and copper, a rapidly established equilibrium precluding assignment of the enzyme in its reactive form. Here, we show that substrate-reduced pea seedling amine oxidase (PSAO) exists predominantly in the Cu(I), TPQ semiquinone state. A new mechanistic proposal for O2 reduction is advanced on the basis of thermodynamic considerations together with kinetic studies (at varying pH, temperature, and viscosity), the identification of steady-state intermediates, and the analysis of competitive oxygen kinetic isotope effects, (18)O KIEs, [kcat/KM((16,16)O2)]/[kcat/KM((16,18)O2)]. The (18)O KIE = 1.0136 +/- 0.0013 at pH 7.2 is independent of temperature from 5 degrees C to 47 degrees C and insignificantly changed to 1.0122 +/- 0.0020 upon raising the pH to 9, thus indicating the absence of kinetic complexity. Using density functional methods, the effect is found to be precisely in the range expected for reversible O2 binding to Cu(I) to afford a superoxide, Cu(II)(eta(1)-O2)(-I), intermediate. Electron transfer from the TPQ semiquinone follows in the first irreversible step to form a peroxide, Cu(II)(eta(1)-O2)(-II), intermediate driving the reduction of O2. The similar (18)O KIEs reported for copper amine oxidases from other sources raise the possibility that all enzymes react by related inner-sphere mechanisms although additional experiments are needed to test this proposal.
含铜和对苯二醌(TPQ)的胺氧化酶利用氧气代谢生物胺,同时产生过氧化氢供细胞使用。由于酪氨酸衍生的TPQ与铜之间质子耦合电子转移的模糊影响,氧气还原机制一直是长期争论的主题,这种快速建立的平衡使得难以确定酶的活性形式。在这里,我们表明底物还原的豌豆幼苗胺氧化酶(PSAO)主要以Cu(I)、TPQ半醌状态存在。基于热力学考虑以及动力学研究(在不同的pH、温度和粘度下)、稳态中间体的鉴定以及竞争性氧动力学同位素效应(18O KIEs,[kcat/KM((16,16)O2)]/[kcat/KM((16,18)O2)])的分析,提出了一种新的氧气还原机制。在pH 7.2时,18O KIE = 1.0136 ± 0.0013,在5℃至47℃的温度范围内与温度无关,将pH提高到9时,仅轻微变化至1.0122 ± 0.0020,因此表明不存在动力学复杂性。使用密度泛函方法,发现该效应恰好处于预期的可逆氧气与Cu(I)结合形成超氧化物[Cu(II)(η1-O2)(-I)]+中间体的范围内。TPQ半醌的电子转移在第一个不可逆步骤中进行,形成过氧化物Cu(II)(η1-O2)(-II)中间体,驱动氧气的还原。其他来源的铜胺氧化酶报道的类似18O KIEs增加了所有酶都通过相关内球机制反应的可能性,尽管需要额外的实验来验证这一假设。