Trentmann Oliver, Horn Matthias, van Scheltinga Anke C Terwisscha, Neuhaus H Ekkehard, Haferkamp Ilka
Pflanzenphysiologie, Technische Universität Kaiserslautern, Kaiserslautern, Germany.
PLoS Biol. 2007 Sep;5(9):e231. doi: 10.1371/journal.pbio.0050231.
Energy parasitism by ATP/ADP transport proteins is an essential, common feature of intracellular bacteria such as chlamydiae and rickettsiae, which are major pathogens of humans. Although several ATP/ADP transport proteins have so far been characterized, some fundamental questions regarding their function remained unaddressed. In this study, we focused on the detailed biochemical analysis of a representative ATP/ADP transporter (PamNTT1), from the amoeba symbiont Protochlamydia amoebophila (UWE25) to further clarify the principle of energy exploitation. We succeeded in the purification of the first bacterial nucleotide transporter (NTT) and its functional reconstitution into artificial lipid vesicles. Reconstituted PamNTT1 revealed high import velocities for ATP and an unexpected and previously unobserved stimulating effect of the luminal ADP on nucleotide import affinities. Latter preference of the nucleotide hetero-exchange is independent of the membrane potential, and therefore, PamNTT1 not only structurally but also functionally differs from the well-characterized mitochondrial ADP/ATP carriers. Reconstituted PamNTT1 exhibits a bidirectional orientation in lipid vesicles, but interestingly, only carriers inserted with the N-terminus directed to the proteoliposomal interior are functional. The data presented here comprehensively explain the functional basis of how the intracellular P. amoebophila manages to exploit the energy pool of its host cell effectively by using the nucleotide transporter PamNTT1. This membrane protein mediates a preferred import of ATP, which is additionally stimulated by a high internal (bacterial) ADP/ATP ratio, and the orientation-dependent functionality of the transporter ensures that it is not working in a mode that is detrimental to P. amoebophila. Heterologous expression and purification of high amounts of PamNTT1 provides the basis for its crystallization and detailed structure/function analyses. Furthermore, functional reconstitution of this essential chlamydial protein paves the way for high-throughput uptake studies in order to screen for specific inhibitors potentially suitable as anti-chlamydial drugs.
通过ATP/ADP转运蛋白进行的能量寄生是衣原体和立克次氏体等细胞内细菌的一个基本且常见的特征,这些细菌是人类的主要病原体。尽管到目前为止已经对几种ATP/ADP转运蛋白进行了表征,但关于它们功能的一些基本问题仍未得到解决。在这项研究中,我们专注于对来自变形虫共生体嗜肺原衣原体(UWE25)的代表性ATP/ADP转运体(PamNTT1)进行详细的生化分析,以进一步阐明能量利用的原理。我们成功纯化了首个细菌核苷酸转运体(NTT)并将其功能重组到人工脂质体中。重组后的PamNTT1显示出对ATP的高导入速度,以及腔内ADP对核苷酸导入亲和力产生的意想不到且前所未有的刺激作用。核苷酸异向交换的后一种偏好与膜电位无关,因此,PamNTT1不仅在结构上而且在功能上都与已充分表征的线粒体ADP/ATP载体不同。重组后的PamNTT1在脂质体中呈现双向取向,但有趣的是,只有N端指向蛋白脂质体内部插入的载体才具有功能。此处呈现的数据全面解释了细胞内嗜肺原衣原体如何通过使用核苷酸转运体PamNTT1有效利用宿主细胞能量库的功能基础。这种膜蛋白介导了ATP的优先导入,而高内部(细菌)ADP/ATP比率会进一步刺激这种导入,并且转运体的取向依赖性功能确保其不会以对嗜肺原衣原体有害的模式工作。大量PamNTT1的异源表达和纯化提供了其结晶和详细结构/功能分析的基础。此外,这种衣原体必需蛋白的功能重组为高通量摄取研究铺平了道路,以便筛选可能适合作为抗衣原体药物的特定抑制剂。