Trentmann Oliver, Jung Benjamin, Neuhaus Horst Ekkehard, Haferkamp Ilka
Pflanzenphysiologie, Technische Universität Kaiserslautern, D-67653 Kaiserslautern, Germany.
J Biol Chem. 2008 Dec 26;283(52):36486-93. doi: 10.1074/jbc.M806903200. Epub 2008 Nov 10.
Chlamydiales and Rickettsiales as metabolically impaired, intracellular pathogenic bacteria essentially rely on "energy parasitism" by the help of nucleotide transporters (NTTs). Also in plant plastids NTT-type carriers catalyze ATP/ADP exchange to fuel metabolic processes. The uptake of ATP4-, followed by energy consumption and the release of ADP3-, would lead to a metabolically disadvantageous accumulation of negative charges in form of inorganic phosphate (Pi) in the bacterium or organelle if no interacting Pi export system exists. We identified that Pi is a third substrate of several NTT-type ATP/ADP transporters. During adenine nucleotide hetero-exchange, Pi is cotransported with ADP in a one-to-one stoichiometry. Additionally, Pi can be transported in exchange with solely Pi. This Pi homo-exchange depends on the presence of ADP and provides a first indication for only one binding center involved in import and export. Furthermore, analyses of mutant proteins revealed that Pi interacts with the same amino acid residue as the gamma-phosphate of ATP. Import of ATP in exchange with ADP plus Pi is obviously an efficient way to couple energy provision with the export of the two metabolic products (ADP plus Pi) and to maintain cellular phosphate homeostasis in intracellular living "energy parasites" and plant plastids. The additional Pi transport capacity of NTT-type ATP/ADP transporters makes the existence of an interacting Pi exporter dispensable and might explain why a corresponding protein so far has not been identified.
衣原体目和立克次氏体目作为代谢受损的细胞内病原菌,本质上依靠核苷酸转运体(NTTs)进行“能量寄生”。在植物质体中,NTT型载体也催化ATP/ADP交换以推动代谢过程。如果不存在相互作用的无机磷酸(Pi)输出系统,ATP4-的摄取,随后的能量消耗以及ADP3-的释放,将导致细菌或细胞器中以无机磷酸(Pi)形式出现的代谢不利的负电荷积累。我们发现Pi是几种NTT型ATP/ADP转运体的第三种底物。在腺嘌呤核苷酸异源交换过程中,Pi与ADP以1:1的化学计量比协同转运。此外,Pi可以仅与Pi进行交换转运。这种Pi同源交换依赖于ADP的存在,并为进出口仅涉及一个结合中心提供了首个迹象。此外,对突变蛋白的分析表明,Pi与ATP的γ-磷酸与相同的氨基酸残基相互作用。与ADP加Pi交换的ATP导入显然是一种有效的方式,将能量供应与两种代谢产物(ADP加Pi)的输出耦合起来,并在细胞内生存的“能量寄生虫”和植物质体中维持细胞磷酸盐稳态。NTT型ATP/ADP转运体的额外Pi转运能力使得相互作用的Pi输出体的存在变得不必要,这可能解释了为什么到目前为止尚未鉴定出相应的蛋白质。