Suppr超能文献

使用迭代独立成分分析估计个体诱发电位成分。

Estimation of individual evoked potential components using iterative independent component analysis.

作者信息

Zouridakis G, Iyer D, Diaz J, Patidar U

机构信息

Department of Computer Science, University of Houston, 501 Philip G Hoffman Hall, Houston, TX 77204-3010, USA.

出版信息

Phys Med Biol. 2007 Sep 7;52(17):5353-68. doi: 10.1088/0031-9155/52/17/017. Epub 2007 Aug 16.

Abstract

Independent component analysis (ICA) has been successfully employed in the study of single-trial evoked potentials (EPs). In this paper, we present an iterative temporal ICA methodology that processes multielectrode single-trial EPs, one channel at a time, in contrast to most existing methodologies which are spatial and analyze EPs from all recording channels simultaneously. The proposed algorithm aims at enhancing individual components in an EP waveform in each single trial, and relies on a dynamic template to guide EP estimation. To quantify the performance of this method, we carried out extensive analyses with artificial EPs, using different models for EP generation, including the phase-resetting and the classical additive-signal models, and several signal-to-noise ratios and EP component latency jitters. Furthermore, to validate the technique, we employed actual recordings of the auditory N100 component obtained from normal subjects. Our results with artificial data show that the proposed procedure can provide significantly better estimates of the embedded EP signals compared to plain averaging, while with actual EP recordings, the procedure can consistently enhance individual components in single trials, in all subjects, which in turn results in enhanced average EPs. This procedure is well suited for fast analysis of very large multielectrode recordings in parallel architectures, as individual channels can be processed simultaneously on different processors. We conclude that this method can be used to study the spatiotemporal evolution of specific EP components and may have a significant impact as a clinical tool in the analysis of single-trial EPs.

摘要

独立成分分析(ICA)已成功应用于单次试验诱发电位(EP)的研究。在本文中,我们提出了一种迭代时间ICA方法,该方法一次处理一个通道的多电极单次试验EP,这与大多数现有方法不同,现有方法是空间性的,同时分析所有记录通道的EP。所提出的算法旨在增强每次单次试验中EP波形中的各个成分,并依靠动态模板来指导EP估计。为了量化该方法的性能,我们使用不同的EP生成模型,包括相位重置模型和经典加性信号模型,以及几种信噪比和EP成分潜伏期抖动,对人工EP进行了广泛分析。此外,为了验证该技术,我们采用了从正常受试者获得的听觉N100成分的实际记录。我们对人工数据的结果表明,与简单平均相比,所提出的方法能够显著更好地估计嵌入的EP信号,而对于实际的EP记录,该方法能够在所有受试者的单次试验中持续增强各个成分,进而得到增强的平均EP。该方法非常适合在并行架构中快速分析非常大的多电极记录,因为各个通道可以在不同的处理器上同时进行处理。我们得出结论,该方法可用于研究特定EP成分的时空演变,并且作为单次试验EP分析的临床工具可能会产生重大影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验