Torreão José R A
Instituto de Computação, Universidade Federal Fluminense, 24210-240 Niterói, RJ, Brazil.
Biol Cybern. 2007 Oct;97(4):307-16. doi: 10.1007/s00422-007-0174-0. Epub 2007 Aug 29.
Binocular disparities arise from positional differences of scene features projected in the two retinae, and constitute the primary sensory cue for stereo vision. Here we introduce a new computational model for disparity estimation, based on the Green's function of an image matching equation. When filtering a Gabor-function-modulated signal, the considered Green's function yields a similarly modulated but shifted version of the original signal. Since a Gabor function models the receptive field of a cortical simple cell, the Green's kernel thus allows the simulation of relative shifts between the cell's left and right binocular inputs. A measure of the local degree of matching of such shifted inputs can then be introduced which affords disparity estimation in a similar manner to the energy model of the complex cortical cells. We have therefore effectively reformulated, in physiologically plausible terms, an image matching approach to disparity estimation. Our experiments show that the Green's function method allows the detection of disparities both from random-dot and real-world stereograms.
双眼视差源于投射在两个视网膜上的场景特征的位置差异,是立体视觉的主要感觉线索。在此,我们基于图像匹配方程的格林函数,引入一种新的视差估计计算模型。在对一个由Gabor函数调制的信号进行滤波时,所考虑的格林函数会产生一个与原始信号类似调制但有偏移的版本。由于Gabor函数模拟了皮层简单细胞的感受野,因此格林核允许模拟该细胞左右双眼输入之间的相对偏移。然后可以引入这种偏移输入的局部匹配程度的度量,其以与复杂皮层细胞的能量模型类似的方式提供视差估计。因此,我们有效地以生理上合理的术语重新表述了一种用于视差估计的图像匹配方法。我们的实验表明,格林函数方法能够从随机点立体图和真实世界立体图中检测到视差。