Suppr超能文献

通过基于信息最大化的学习算法生成的双眼视差编码细胞。

Binocular disparity encoding cells generated through an Infomax based learning algorithm.

作者信息

Okajima Kenji

机构信息

Fundamental Research Laboratories, System Device and Fundamental Research, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501 Japan.

出版信息

Neural Netw. 2004 Sep;17(7):953-62. doi: 10.1016/j.neunet.2004.02.004.

Abstract

A learning algorithm for a model binocular cell was derived according to an information maximization principle and by using a low signal-to-noise-ratio approximation. The algorithm updates cell's synaptic weights so that the information obtained from the cell's output is increased. According to the algorithm, model binocular cells were trained by using computer-generated stereo images as training data. As a result, cells tuned to various disparities were generated. Also, generated synaptic weight patterns of the cells were similar to Gabor-wavelets and receptive fields of simple cells in the visual cortex. Thus, they were orientation and spatial frequency selective as well as disparity selective. Gabor functions were used to fit the generated weight patterns. The fitting results indicated that the generated cells encode disparities in terms of phase disparity and/or position disparity. This result agrees with experimental findings by Anzai et al. [J Neurophys 82 (1999) 874] and is consistent with ICA-based theoretical results obtained [Network: Comput Neural Syst 11 (2000) 191].

摘要

基于信息最大化原理并使用低信噪比近似,推导了一种用于模型双眼细胞的学习算法。该算法更新细胞的突触权重,以便增加从细胞输出获得的信息。根据该算法,使用计算机生成的立体图像作为训练数据对模型双眼细胞进行训练。结果,生成了调谐到各种视差的细胞。此外,生成的细胞突触权重模式类似于视觉皮层中简单细胞的伽柏小波和感受野。因此,它们具有方向和空间频率选择性以及视差选择性。使用伽柏函数来拟合生成的权重模式。拟合结果表明,生成的细胞根据相位视差和/或位置视差对视差进行编码。该结果与安齐等人的实验结果一致[《神经生理学杂志》82 (1999) 874],并且与基于独立成分分析获得的理论结果一致[《网络:计算神经系统》11 (2000) 191]。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验