Suppr超能文献

对来自多种具有不同已知检测限的检测方法的纵向生物标志物数据进行建模。

Modeling longitudinal biomarker data from multiple assays that have different known detection limits.

作者信息

Albert Paul S

机构信息

Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland 20892, USA.

出版信息

Biometrics. 2008 Jun;64(2):527-37. doi: 10.1111/j.1541-0420.2007.00886.x. Epub 2007 Aug 30.

Abstract

Assays to measure biomarkers are commonly subject to large amounts of measurement error and known detection limits. Studies with longitudinal biomarker measurements may use multiple assays in assessing outcome. I propose an approach for jointly modeling repeated measures of multiple assays when these assays are subject to measurement error and known lower detection limits. A commonly used approach is to perform an initial assay with a larger lower detection limit on all repeated samples, followed by only performing a second more expensive assay with a lower minimum level of detection when the initial assay value is below its lower limit of detection. I show how simply replacing the initial assay measurement with the second assay measurement may be a biased approach and investigate the performance of the proposed joint model in this situation. Additionally, I compare the performance of the joint model with an approach that only uses the initial assay measurements in analysis. Further, I consider alternative designs to only performing the second assay when the initial assay measurement is below its lower detection limit. Specifically, I show that one only needs to perform the second assay on a fraction of assays that are above the lower detection limit on the first assay to substantially increase the efficiency. Further, I show the efficiency advantages of performing the second assay at random without regard to the initial assay measurement over a design in which the second assay is only performed when the initial assay is below its lower limit of detection. The methodology is illustrated with a recent study examining the use of a vaccine in treating macaques with simian immunodeficiency virus.

摘要

用于测量生物标志物的检测方法通常会受到大量测量误差和已知检测限的影响。对生物标志物进行纵向测量的研究在评估结果时可能会使用多种检测方法。我提出了一种方法,用于在这些检测方法存在测量误差和已知较低检测限时,对多种检测方法的重复测量进行联合建模。一种常用的方法是对所有重复样本进行下限检测限较高的初始检测,然后仅在初始检测值低于其检测下限时,对最低检测水平较低的第二种更昂贵的检测方法进行检测。我展示了简单地用第二种检测方法的测量值替换初始检测方法的测量值可能是一种有偏差的方法,并研究了在这种情况下所提出的联合模型的性能。此外,我将联合模型的性能与仅在分析中使用初始检测方法测量值的方法进行了比较。此外,我考虑了替代设计,而不是仅在初始检测方法测量值低于其检测下限时才进行第二种检测。具体来说,我表明只需要对第一种检测方法中高于检测下限的一部分检测进行第二种检测,就能大幅提高效率。此外,我展示了在不考虑初始检测方法测量值的情况下随机进行第二种检测相对于仅在初始检测方法低于其检测下限时才进行第二种检测的设计所具有的效率优势。通过最近一项研究对疫苗治疗感染猿猴免疫缺陷病毒的猕猴的应用进行了方法学说明。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验