Fischer Wolfgang, Zadori Zoltan, Kullnick Yvonne, Gröger-Arndt Helke, Franke Heike, Wirkner Kerstin, Illes Peter, Mager Peter P
Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, D-04107 Leipzig, Germany.
Eur J Pharmacol. 2007 Dec 8;576(1-3):7-17. doi: 10.1016/j.ejphar.2007.07.068. Epub 2007 Aug 8.
Wild-type human (h) P2X(3) receptors expressed in HEK293 cells responded to the prototypic agonist alpha,beta-methylene ATP (alpha,beta-meATP) with rapidly desensitizing inward currents and an increase in the intracellular Ca(2+) concentration. In contrast to electrophysiological recordings, Ca(2+) microfluorimetry showed a lower maximum of the concentration-response curve of alpha,beta-meATP in the transiently than in the permanently transfected HEK293 cells. However, the concentrations causing 50% of the maximum possible effect (EC(50) values) were identical, when measured with either method. In order to determine the role of certain conserved, positively charged amino acids in the nucleotide binding domains (NBD-1-4) of hP2X(3) receptors for agonist binding, the lysine-63, -65, -176 and -299 as well as the arginine-281 and -295 residues were substituted by the neutral amino acid alanine. We observed no effect of alpha,beta-meATP at the K63A, K176A, R295A, and K299A mutants, and a marked decrease of agonist potency at the K65A and R281A mutants. The P2X(3) receptor antagonist 2',3'-O-trinitrophenyl-ATP (TNP-ATP) blocked the effect of alpha,beta-meATP at the wild-type hP2X(3) receptor with lower affinity than at the mutant K65A, indicating an interference of this mutation with the docking of the antagonist with its binding sites. The use of confocal fluorescence microscopy in conjunction with an antibody raised against the extracellular loop of the hP2X(3) receptor documented the expression of all mutants in the plasma membrane of HEK293 cells. Eventually, we modelled the possible agonist and antagonist binding sites NBD-1-4 of the hP2X(3) subunit by using structural bioinformatics. This model is in complete agreement with the available data and integrates results from mutagenesis studies with geometry optimization of the tertiary structure predictions of the receptor.
在HEK293细胞中表达的野生型人(h)P2X(3)受体对原型激动剂α,β-亚甲基ATP(α,β-meATP)产生快速脱敏的内向电流反应,并使细胞内Ca(2+)浓度升高。与电生理记录不同,Ca(2+)微量荧光测定显示,在瞬时转染的HEK293细胞中,α,β-meATP浓度-反应曲线的最大值低于永久转染的细胞。然而,用这两种方法测量时,引起最大效应50%的浓度(EC(50)值)是相同的。为了确定hP2X(3)受体核苷酸结合结构域(NBD-1-4)中某些保守的带正电荷氨基酸在激动剂结合中的作用,将赖氨酸-63、-65、-176和-299以及精氨酸-281和-295残基替换为中性氨基酸丙氨酸。我们观察到α,β-meATP对K63A、K176A、R295A和K299A突变体无作用,而对K65A和R281A突变体激动剂效力显著降低。P2X(3)受体拮抗剂2',3'-O-三硝基苯-ATP(TNP-ATP)阻断α,β-meATP对野生型hP2X(3)受体的作用时,其亲和力低于对突变体K65A的亲和力,表明该突变干扰了拮抗剂与其结合位点的对接。使用共聚焦荧光显微镜结合针对hP2X(3)受体细胞外环产生的抗体,证明了所有突变体在HEK293细胞质膜中的表达。最终,我们利用结构生物信息学对hP2X(3)亚基可能的激动剂和拮抗剂结合位点NBD-1-4进行了建模。该模型与现有数据完全一致,并将诱变研究结果与受体三级结构预测的几何优化相结合。