Suppr超能文献

大小在配体门控离子通道的激活/抑制中起重要作用。

Size matters in activation/inhibition of ligand-gated ion channels.

机构信息

Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.

出版信息

Trends Pharmacol Sci. 2012 Sep;33(9):482-93. doi: 10.1016/j.tips.2012.06.005. Epub 2012 Jul 11.

Abstract

Cys loop, glutamate, and P2X receptors are ligand-gated ion channels (LGICs) with 5, 4, and 3 protomers, respectively. There is now growing atomic level understanding of their gating mechanisms. Although each family is unique in the architecture of the ligand-binding pocket, the pathway for motions to propagate from ligand-binding domain to transmembrane domain, and the gating motions of the transmembrane domain, there are common features among the LGICs, which are the focus of the present review. In particular, agonists and competitive antagonists apparently induce opposite motions of the binding pocket. A simple way to control the motional direction is ligand size. Agonists, usually small, induce closure of the binding pocket, leading to opening of the channel pore, whereas antagonists, usually large, induce opening of the binding pocket, thereby stabilizing the closed pore. A cross-family comparison of the gating mechanisms of the LGICs, focusing in particular on the role played by ligand size, provides new insight on channel activation/inhibition and design of pharmacological compounds.

摘要

Cys 环、谷氨酸和 P2X 受体分别是具有 5、4 和 3 个原体的配体门控离子通道 (LGIC)。现在对它们的门控机制有了越来越深入的原子水平的理解。尽管每个家族在配体结合口袋的结构上都是独特的,但从配体结合域到跨膜域的运动传播途径以及跨膜域的门控运动是 LGIC 共有的特征,这是本综述的重点。特别是,激动剂和竞争性拮抗剂显然会引起结合口袋的相反运动。控制运动方向的一种简单方法是配体大小。通常较小的激动剂会诱导结合口袋关闭,从而打开通道孔,而通常较大的拮抗剂会诱导结合口袋打开,从而稳定关闭的孔。对 LGIC 门控机制的跨家族比较,特别是关注配体大小所起的作用,为通道激活/抑制和药理学化合物的设计提供了新的见解。

相似文献

1
Size matters in activation/inhibition of ligand-gated ion channels.
Trends Pharmacol Sci. 2012 Sep;33(9):482-93. doi: 10.1016/j.tips.2012.06.005. Epub 2012 Jul 11.
2
Gating Motions and Stationary Gating Properties of Ionotropic Glutamate Receptors: Computation Meets Electrophysiology.
Acc Chem Res. 2017 Apr 18;50(4):814-822. doi: 10.1021/acs.accounts.6b00598. Epub 2017 Feb 10.
3
Mechanism-Based Mathematical Model for Gating of Ionotropic Glutamate Receptors.
J Phys Chem B. 2015 Aug 27;119(34):10934-40. doi: 10.1021/acs.jpcb.5b00521. Epub 2015 Apr 1.
4
Unanticipated parallels in architecture and mechanism between ATP-gated P2X receptors and acid sensing ion channels.
Curr Opin Struct Biol. 2013 Apr;23(2):277-84. doi: 10.1016/j.sbi.2013.04.005. Epub 2013 Apr 26.
5
Cys-loop receptor channel blockers also block GLIC.
Biophys J. 2011 Dec 21;101(12):2912-8. doi: 10.1016/j.bpj.2011.10.055. Epub 2011 Dec 20.
6
Structural insights into Cys-loop receptor function and ligand recognition.
Biochem Pharmacol. 2013 Oct 15;86(8):1042-53. doi: 10.1016/j.bcp.2013.07.001. Epub 2013 Jul 10.
7
Insights into the channel gating of P2X receptors from structures, dynamics and small molecules.
Acta Pharmacol Sin. 2016 Jan;37(1):44-55. doi: 10.1038/aps.2015.127.
9
Geometric rules of channel gating inferred from computational models of the P2X receptor transmembrane domain.
J Mol Graph Model. 2015 Sep;61:107-14. doi: 10.1016/j.jmgm.2015.06.015. Epub 2015 Jul 9.
10
P2X Receptor Activation.
Adv Exp Med Biol. 2017;1051:55-69. doi: 10.1007/5584_2017_55.

引用本文的文献

1
Gating Motions and Stationary Gating Properties of Ionotropic Glutamate Receptors: Computation Meets Electrophysiology.
Acc Chem Res. 2017 Apr 18;50(4):814-822. doi: 10.1021/acs.accounts.6b00598. Epub 2017 Feb 10.
2
Molecular blueprint of allosteric binding sites in a homologue of the agonist-binding domain of the α7 nicotinic acetylcholine receptor.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):E2543-52. doi: 10.1073/pnas.1418289112. Epub 2015 Apr 27.
3
Mechanism-Based Mathematical Model for Gating of Ionotropic Glutamate Receptors.
J Phys Chem B. 2015 Aug 27;119(34):10934-40. doi: 10.1021/acs.jpcb.5b00521. Epub 2015 Apr 1.
4
Reduced curvature of ligand-binding domain free-energy surface underlies partial agonism at NMDA receptors.
Structure. 2015 Jan 6;23(1):228-236. doi: 10.1016/j.str.2014.11.012. Epub 2014 Dec 24.
5
Comparative pharmacology of flatworm and roundworm glutamate-gated chloride channels: Implications for potential anthelmintics.
Int J Parasitol Drugs Drug Resist. 2014 Aug 10;4(3):244-55. doi: 10.1016/j.ijpddr.2014.07.004. eCollection 2014 Dec.
8
Heteromeric assembly of P2X subunits.
Front Cell Neurosci. 2013 Dec 18;7:250. doi: 10.3389/fncel.2013.00250.

本文引用的文献

1
Molecular mechanism of ATP binding and ion channel activation in P2X receptors.
Nature. 2012 May 10;485(7397):207-12. doi: 10.1038/nature11010.
2
Gating mechanism of a P2X4 receptor developed from normal mode analysis and molecular dynamics simulations.
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4140-5. doi: 10.1073/pnas.1119546109. Epub 2012 Feb 29.
5
Ligand-binding domain of an α7-nicotinic receptor chimera and its complex with agonist.
Nat Neurosci. 2011 Sep 11;14(10):1253-9. doi: 10.1038/nn.2908.
6
Preferential use of unobstructed lateral portals as the access route to the pore of human ATP-gated ion channels (P2X receptors).
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13800-5. doi: 10.1073/pnas.1017550108. Epub 2011 Aug 1.
7
Activation and regulation of purinergic P2X receptor channels.
Pharmacol Rev. 2011 Sep;63(3):641-83. doi: 10.1124/pr.110.003129. Epub 2011 Jul 7.
8
Ligand activation of the prokaryotic pentameric ligand-gated ion channel ELIC.
PLoS Biol. 2011 Jun;9(6):e1001101. doi: 10.1371/journal.pbio.1001101. Epub 2011 Jun 21.
10
Ion access pathway to the transmembrane pore in P2X receptor channels.
J Gen Physiol. 2011 Jun;137(6):579-90. doi: 10.1085/jgp.201010593.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验