Suppr超能文献

化学分类学的发展

The evolution of chemosystematics.

作者信息

Reynolds Tom

机构信息

Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, UK.

出版信息

Phytochemistry. 2007 Nov-Dec;68(22-24):2887-95. doi: 10.1016/j.phytochem.2007.06.027. Epub 2007 Sep 4.

Abstract

Chemosystematics has been used to distinguish plants and other organisms that are useful for food and those best avoided. Originally unwritten, this knowledge has been progressively formalized with useful, harmful and inactive chemical constituents from relevant taxa now identified and recorded. This knowledge has led to insights into taxonomy of these plants, animals and micro-organisms. Advances in analytical instrumentation, in particular chromatography, followed by electronic detection methods, have speeded these studies, culminating in metabolic profiling, ("metabolomics"). The huge array of chemical constituents isolated from plants combined with morphological and cytological data take their place as part of the overall Natural History of the organism in its environment. The study of, DNA (genomics) and to a certain extent m-RNA (transcriptomics) and proteins (proteomics), has led to the immense subject of molecular biology which relates the phenotype of a taxon to its genome. This type of chemosystematics on its own does not of course describe the small molecules in plants, often called, perhaps misguidedly, "secondary compounds", or how they relate to each other, to the plant containing them or to the environment. Economic uses flow from this knowledge, such as the topic of non-protein amino acids and amines, which from 1958 to the present has produced information from the chemotaxonomic to the severely practical. Literature on the subject from 1909 to the present charts developments in the discovery of new compounds and their use in systematics. Often a mere catalogue, a list of plant constituents is nevertheless part of the overall description of a plant.

摘要

化学分类学已被用于区分对食物有用的植物和其他生物以及最好避开的生物。这种知识最初是不成文的,随着相关分类群中有用、有害和无活性化学成分的确定和记录,它已逐渐被形式化。这些知识为这些植物、动物和微生物的分类学提供了见解。分析仪器的进步,特别是色谱法,随后是电子检测方法,加速了这些研究,最终形成了代谢谱分析(“代谢组学”)。从植物中分离出的大量化学成分与形态学和细胞学数据一起,成为生物体在其环境中的整体自然史的一部分。对DNA(基因组学)以及在一定程度上对mRNA(转录组学)和蛋白质(蛋白质组学)的研究,催生了庞大的分子生物学学科,该学科将一个分类群的表型与其基因组联系起来。当然,这种化学分类学本身并不能描述植物中的小分子,这些小分子通常被称为(可能有些误导)“次生化合物”,也不能描述它们之间的相互关系、与含有它们的植物的关系或与环境的关系。这种知识产生了经济用途,比如非蛋白质氨基酸和胺类这一主题,从1958年至今已经产生了从化学分类学到实际应用的信息。从1909年至今关于该主题的文献记录了新化合物发现及其在分类学中应用的发展情况。植物成分列表通常仅仅是一个目录,但它仍然是植物整体描述的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验